

Potomac Monitoring Forum

March 10-11, 2008

W. R. Boynton \& E. M. Bailey

University of Maryland Center for Environmental Science Chesapeake Biological Laboratory

Work supported by UMCES, NSF, MD-DNR, MD-MDE, NOAA, EPA

Outline

- Monitoring Programs...lots of water being dipped from the estuary
- Nutrient loads... where were we and where are we now
- Water Quality Conditions (historical and current)
- A short SAV story
- Some special features (blooms, pH , sediment/bloom interactions)
- A budget for N... where does this stuff go?
- Fisheries issues and monitoring
- Some preliminary recommendations

Monthly sampling at 12 digit basin outlets, plus tidal sites in Breton Bay and Port Tobacco River. Nutrients, BOD, chlorophyll, insitu temp, pH , cond, DO, turbidity salinity and discharge.

Spring and fall nutrient synoptic surveys in St. Mary's River watershed (@ 50 sites).

Remainder of Potomac basin to

Our Nation's Most Prominent Rivers

River
ISI References
Columbia 3,263Mississippi 2,921Colorado2,195Hudson1,193
Missouri 826
Potomac 309

Potomac in Flood

Potomac NOT in Flood

Potomac River Point of Rocks Ranked Flow Data Daily Average Cubic Feet Per Second (cfs)

Nitrate Concentration
 Susquehanna River at Harrisburg, PA

Susquehanna Nitrate Loading

 Harrisburg, PA

- N loading from Susquehanna increased substantially in early 1970's.
- Subsequently, no major trend.

TN Loadings to Potomac River Estuary

N. Jaworski 2007

Potomac River Estuary TN Surface Area Loading Rate (per unit of water surface area)

Land Effects vs Algal Biomass

Surface and Bottom DO (September 21-22, 1912) Potomac River Estuary

Potomac River Estuary
 Chlorophyll-a Trends 1950-2003

- Some very large declines in chlorophyll-a
- Most notable in the upper estuary
- Some indications of time-lags along the axis of the estuary

Comparison of Pre- and Post Denitrification at Blue Plains (1985-1996)

Hypoxia vs. Mean Depth in Chesapeake Bay and Tributaries 1986-1998

Potomac River Surface Water Turbidity 2007

Turbidity (NTU)

	$0-7.5$
	$7.5-15$
\square	$15-22.5$
$22.5-30$	
\square	$37.5-52.4$

Potomac River - August 13, 14, 17, 20, 2007 Maryland
Department of Natural Res ources
\qquad
Preliminary Data from
mom
Interpolation: Inverse Distance Weightes Interpolation: Inverse Distance Weighted
Not corrected for time of day influences
Not to be Used Without DNR Permission EAugust 2007

Identification of "HOT-SPOTS" with intensive spatial sampling

June 11-16, 2007

Chlorophyll (ug/l)

0-10
10-20
20-30
30-40
40-50
50-60
60-100
$100+$

2006 Spatially Intensive Shallow Water Quality Monitoring of the Potomac River SAV Habitat Hotspots - Mesohaline

\% of DATAFLOW Cruises $(\mathbf{n}=5)$ where pixel meets all habitat criteria (Sept. \& Oct. excluded)

\% of DATAFLOW Cruises ($\mathrm{n}=7$) where pixel meets all habitat criteria

Microcystis Bloom 2004

Summer (June-September) \% bloom samples (>10,000 cells/milliliter Microcystis) for 9 Potomac River stations, 1985-2006.

P. Tango, pers comm.

Potomac River Estuary
 Microcystis aeruginosa Bloom Average Densities Summer 2004

Bloom Year

Piscataway Con Mon August 2004

Potomac Sediment PO_{4} Flux

Potomac River SAV Coverage

(from:http://www.vims.edu/bio/sav)

SAV Coverage and Secchi Depth

Tidal Potomac River Estuary
(1983-1989)

TIDAL FRESH
POTOMAC
A Tale of Two Estuaries

- Potomac and Patuxent SAV responses differ
- Salinity zone important
- Issue of duel nutrient controls

Potomac River Estuary Nitrogen Budget

(1985-1986)

Estuarine Nitrogen Export

The percent of TN input that is exported is inversely related to water residence time

From Nixon et al., 1996

Denitrification Results

Potomac River Fish Monitoring

- Another issue the public cares about
- Possibly a catch...hug... and release fishery is the answer

Chesapeake Bay

Chesapeake Bay yields 30 times more fish than an average lake with the same primary production ...

Potomac River Estuary Commercial Fishery Yields 1965-2001

- General downward trend since mid-1980's
- Variable amount know concerning these trends
- What do we know about stock size and fishing effort?
- Potomac River Fisheries Commission has detailed spatial catch data...the best in the Bay region

Habitat Quality vs Fisheries Harvests

Adapted from Moreno et al. 2000 and Houde et al. 1999

Potomac River Estuary Pelagic vs Demersal Catches

Average Surface Chlorophyll ($\mathrm{mg} \mathrm{m}^{-3}$)

Trajectories of Response to Nutrient Loading

Nutrient Loading

Nutrient Loading

Nutrient Loading

- Theory suggests alternative ecosystem response to changes in environmental conditions (e.g., nutrient loading, climate)
- Responses can follow ~linear pathways with direct proportional response (a)
- Responses can follow "sigmoidal" shape with apparent threshold shift within narrow range of environmental conditions
- Responses can exhibit multiple stable states with abrupt transitions and hysteretic patterns where degradation and restoration follow different trajectories

Responses to N\&P-Reduction: Gunston Cove

- Gunston Cove is in the lower tidal freshwater region of Potomac R.
- Major WWTP (Blue Plains) above GC was upgraded for P-removal in 1970s \& continued into late 1980s
- Chl-a has been decreasing since 1988 along hysteretic trajectory with Chl-a levels per unit P above those during 1984-1987
- SAV populations in GC have been recovering since the 1990s with reductions in phytoplankton Chl-a
- SAV recovery following trajectory with apparent threshold shape around $30-40 \mu \mathrm{~g} / \mathrm{l}$

Responses to N\&P-Reduction: Potomac Tidal Fresh

- Advanced Tertiary Treatment at Blue Plains WWTP reduces P-loads by >90\% in 30 years
- Phytoplankton Chl-a and bottom O_{2} respond rapidly
- N -load is also reduced by smaller fraction

- Chl-a followed a direct - linear response to P-loading
- Bottom water O_{2} followed inverse -linear to P-loading

- No signs of thresholds or hysteresis

From Kemp et al. 2005

Feedback Effects: (2) Benthic Filter-Feeders

- Invasion of Asiatic clam (Corbicula fluminea) in early 1980s in Tidal freshwater Potomac (z ~ 2 m)
- Large (75\%) reduction in phytoplankton in 30 km stretch of estuary due to clam filtration
- Clams persisted for a decade causing substantial increases in water clarity
- Improved water clarity led to SAV recovery in region and increased waterfowl abundance

Summary of

Nutrient-Related Feedbacks in Bay Ecosystem

-Positive \& negative feedbacks control paths of ecosystem change with Bay degradation
-Among other mechanisms, input of nutrients affects hypoxia \& light

- Hypoxia leads to more nutrients, more algae, \& more hypoxia
- Turbidity leads to less SAV causing more turbidity, less SAV
- Oysters \& marshes tend to reinforce these feedbacks
-Processes reverse w/ restoration, thus reinforcing trends

From Kemp et al. 2005

Summary and Recommendations

- There are "Weak-Spots" in the monitoring regime (e.g., lower estuary)
- Multiple "processes" are poorly measured and controlling mechanisms not fully understood (e.g., denitrification, fish stock size and dynamics). There is a need to incorporate process measurements into monitoring programs
- Are "In-Estuary" restoration schemes possible (e.g., reefs, augmentation of fringing wetlands)
- Need continued effort at analysis and synthesis of old and new data with empahsis on solutions to water quality issues and forecasting
- What are the likely recovery trajectories...we need to know!!
- There are a ton of things I don't know about that also need attention...that's one reason why we are here!!!

Acknowledgements

Figures, maps, photos and data with help from:

Virginia Institute of Marine Science

MDE
J. Cornwell (UMCES-HPL)
L. Wainger (UMCES-CBL)
J. Anderson (MERC)
J. Julian (UMCES-APL)
N. Rybiki (USGS)
M. Kemp (UMCES-HPL)
M. Hall (MDDNR)
P. Tango (USGSICHPO)

N. Jaworski

