Cost-Effective Spatial Data Interpolation

Lisa A. Wainger and Walter Boynton University of Maryland Center for Environmental Science Solomons, Maryland

Questions to Discuss

- 1. What is the cost-effective level of effort in conducting interpolation?
- 2. Can we adequately capture weather, time-of-day & tidal signals to inform choices for interpolation methods?
- 3. How might other data sets or dynamic models enrich the interpretation and analysis of a single day's data?
- 4. Can spatially-rich data be used to leverage long-term observations of water quality to detect trends ?
- 5. How might we improve data sampling methods to provide the most representative data for interpolation while still offering a practical approach for the field crew?

Data and analysis options

Sparse sampling network used for routine water quality monitoring Data collected 12-20 times per year

DATAFLOW sampling (boatmounted sensors) provide more detailed spatial coverage than longterm monitoring stations Data collected 7-13 times per year

Spatially detailed data (DATAFLOW) provide additional information for spatial interpolation of water quality

Different Methods of Interpolation of DATAFLOW

Inverse Distance Weighting of the River (all points included)

Whole River Kriged

Kriged Pieces of the River (all points included)

Detrending vs. No Detrending

Kriging DO with Detrending DO = *f* (distance from mouth)

Kriging DO with No Detrending (ordinary kriging)

Difference between Detrended and Ordinary Kriging Results

Detrending = Challenges

- Goal of developing uniform techniques for detrending multiple data sets seem limited

- Trends were highly inconsistent between months

- Detrending did not improve interpolation in our test

- Can we use other sources of variables in detrending (e.g., model data)?

- Yet residuals are highly useful for evaluating excursions from expected values

Comparison of Kriging with & without Barriers

COMPARISON OF DATAFLOW AND REMOTE SENSING RESULTS

Lower Potomac River – 20 April 2007 Estimation of Chlorophyll a

SAV Habitat Analysis of Potomac River

Goal: Understand SAV Habitat Quality & Restoration Potential

SAV Habitat Criteria

Potomac River	Water column light requirement (%) = g(turbidity, salinity, chla)	Chlorophyll a (µg/L)	Dissolved Inorganic Phosphorus (mg/L)	Dissolved Inorganic Nitrogen (mg/L)
Tidal Fresh	>13	<15	None*	None
Mesohaline	>22	<15	<0.01	<0.15

2006 Potomac River (Mesohaline and Tidal Fresh) DataFlow Cruises

SAV Habitat Hotspots – Mesohaline Potomac 2006 Spatially Intensive Shallow Water Quality Monitoring

Cumulative Frequency Diagrams

Spatially Intensive Shallow Water Quality Monitoring of the Potomac River

Patuxent River % Observations Meeting SAV Habitat Criteria

(nutrient criteria excluded)

Conclusions and Recommendations

- Interpolation techniques that go beyond basic IDW, create significant time costs, even when tasks are automated with scripts.
- More complex spatial interpolation in some cases, but not others, appears to provide substantially improved information over simpler interpolation techniques.
- Expected use of interpolation results as well as time and budget constraints can inform the level of effort that is warranted or feasible.
- The use of barriers, detrending and other techniques, raises the risk of imposing conditions on data that may not represent physical reality.
- On the other hand, failing to account for barriers introduces localized misrepresentations of data (e.g., near peninsulas).
- Failure to detrend dissolved oxygen may create spatial gradients that represent time effects rather than spatial variability.
- Alternative sampling regimes could help to minimize time-of-day effects on data
- Model data output could be a useful addition to detrending functions to better establish "expected values" given time of year and antecedent rainfall conditions if concerns about error can be addressed.

Acknowledgements

- Supported by Maryland DNR Tidewater Ecosystem Assessment Division
- Other major contributors:

Maria Ceballos Eva Bailey