MARYLAND OFFICE OF ENVIRONMENTAL PROGRAMS MARYLAND CHESAPEAKE BAY WATER QUALITY MONITORING PROGRAM

ECOSYSTEM PROCESSES COMPONENT (EPC)

LEVEL I DATA REPORT NO.2

(July 1984 - June 1985)

PREPARED FOR:

Office of Environmental Programs Department of Health & Mental Hygiene State of Maryland

PREPARED BY:

W.R. Boynton¹ and W.M. Kemp², Principal Investigators J.M. Barnes, Program Manager¹

Center for Environmental & Estuarine Studies University of Maryland

¹Chesapeake Biological Laboratory (CBL) Solomons, Maryland 20688-0038

²Horn Point Environmental Laboratories (HPEL) Cambridge, Maryland 21613-0775

MARYLAND OFFICE OF ENVIRONMENTAL PROGRAMS

MARYLAND CHESAPEAKE BAY WATER QUALITY MONITORING PROGRAM

ECOSYSTEM PROCESSES COMPONENT (EPC)

LEVEL I DATA REPORT NO.2

(July 1984 - June 1985)

PREPARED FOR:

Office of Environmental Programs Department of Health & Mental Hygiene State of Maryland

PREPARED BY:

W.R. Boynton¹ and W.M. Kemp², Principal Investigators J.M. Barnes, Program Manager¹

> Center for Environmental & Estuarine Studies University of Maryland

¹Chesapeake Biological Laboratory (CBL) Solomons, Maryland 20688-0038

²Horn Point Environmental Laboratories (HPEL) Cambridge, Maryland 21613-0775

ABSTRACT

Program Objectives

The primary objectives of the Ecosystem Processes Component (EPC) of the Maryland Chesapeake Bay Water Quality Monitoring Program are to:

- characterize the present state of the bay (including spatial and seasonal variation) relative to sediment-water nutrient exchanges and oxygen consumption and the vertical rate of deposition of organic particulates to deep waters and the sediment surface.
- determine the long-term trends that might develop in sedimenwater exchanges and vertical deposition rates in response to pollution control programs.
- 3) integrate the information collected in this program with other elements of the monitoring program to gain a better understanding of the processes affecting Chesapeake Bay water quality and its impact on living resources.

Measurements of sediment-water nutrient and oxygen exchanges are made on a quarterly basis at four locations in the mainstem Bay, and at two locations in each of three major tributary rivers (Patuxent, Choptank, and Potomac). Vertical deposition rates are monitored at two mainstem Bay locations, one near the upstream point in which anoxic conditions exist and one in the central anoxic region farther downstream. Measurements are made almost continuously during the spring and summer periods, with a lower frequency during the fall and winter. Activities in this program have been coordinated with other components of the Maryland Chesapeake Bay Water Quality Monitoring Program in terms of station locations, sampling frequency, methodologies, data storage and transmission, reporting schedules and data synthesis.

Justification

Recently, it has been shown that sediment-water processes and deposition of organic matter to the sediment surface are major features of estuarine nutrient cycles and play an important role in determining water quality and habitat conditions. For example, it has been found that during summer periods, when water quality conditions are typically poorest (i.e. anoxic conditions in deep water, algal blooms), sediment releases of nutrients (e.g. nitrogen, phosphorus) and consumption of oxygen are often highest as is the rate of organic matter deposition to the deep waters of the Bay. To a considerable extent, it is the magnitude of these processes which determines nutrient and oxygen water quality conditions in many zones of the Bay. Ultimately, these processes are driven by inputs of organic matter and nutrients from both natural and anthropogenic sources. If water quality management programs are instituted and loadings decrease, changes in the magnitude of the processes monitored in this program will serve as a guide in determining the effectiveness of strategies aimed at improving Bay water quality and habitat conditions.

INTRODUCTION

During the past decade much has been learned about the effects of nutrient inputs (e.g. nitrogen, phosphorus, silica), from both natural and anthropogenic sources, on such important estuarine processes as phytoplankton production and oxygen status (Nixon, 1981; D'Elia et al., 1983; Kemp and Boynton, 1982). While our understanding is not complete, important pathways regulating these processes have also been identified and related to water quality conditions. For example, it has been shown that annual algal primary production and maximum algal biomass levels in many estuaries (including portions of Chesapeake Bay) are related to the magnitude of nutrient loading from all types of sources (Boynton et al., 1982a). It has also been found that high, and at times excessive, algal production is sustained through the summer and fall periods by the recycling of essential nutrients which had entered the estuary previous to periods exhibiting eutrophic characteristics. Similarly, sediment oxygen demand (SOD) has been found to be related to the amount of organic matter reaching the sediment surface and the magnitude of this demand is sufficiently high in many regions to be a major oxygen sink (Hargrave, 1969; Kemp and Boynton, 1980).

The delay between nutrient additions and the response of algal communities suggests that there are mechanisms wherein nutrients are retained in estuaries, such as the Chesapeake, and can be mobilized for use at later dates. Research conducted in Chesapeake Bay and other estuaries has shown that estuarine sediments can act as both important storages and sources for nutrients as well as important sites of intense oxygen consumption (Kemp and Boynton, 1984). For example, during summer periods in the Choptank and Patuxent estuaries, 40-70% of the total oxygen utilization was associated with sediments and 25-70% of algal nitrogen demand was supplied from estuarine sediments (Boynton et al., 1982b). Processes of this magnitude have a pronounced effect on estuarine water quality and habitat conditions. In terms of storage, sediments in much of Chesapeake Bay, especially

the upper Bay and tributary rivers, contain large amounts of carbon, nitrogen, phosphorus and other compounds. It appears that a large percentage of this material reaches the sediments during the warm periods of the year and that some portion is available to regenerative processes and hence for continued algal utilization. Nutrients, and other materials deposited or buried in sediments, represent the potential "water quality memory" of the Bay.

Justification

Processes associated with estuarine sediments have a considerable influence on water quality and habitat conditions in the Bay and it's tributaries. In a simplified fashion, nutrients and organic matter enter the Bay from a variety of sources, including sewage treatment plant effluents, fluvial inputs, local nonpoint drainage and direct rainfall on Bay waters. It appears that dissolved nutrients are rapidly removed from the water column via biological, chemical and physical mechanisms and much of this material then sinks to the bottom where it is remineralized. These essential nutrients are then utilized by algal communities, a portion of which in turn sinks to the bottom, contributing to the development of anoxic conditions and loss of habitat for important infaunal, shellfish and demersal fish communities. The regenerative capacities and the potentially large nutrient storages in bottom sediments ensure a large return flux of nutrients from sediments to the water column and sustain continued phytoplankton growth, deposition of organics to deep waters and anoxic conditions typically associated with eutrophying estuarine systems.

It is within the context of this model that a monitoring study of deposition, sediment oxygen demand and sediment nutrient regeneration has been initiated. The rationale is that if nutrient and organic matter loading to the Bay is decreased then the cycle of deposition to sediments, sediment oxygen demand, release of nutrients and continued high algal production will also be decreased. Since these benthic processes are important in influencing water quality conditions, changes

in these processes will serve as important indications as to the effectiveness of nutrient control actions.

Objectives

The primary objectives of the Ecosystem Processes Component (EPC) of the Maryland Chesapeake Bay Water Quality Monitoring Program are to:

- characterize the present state of the bay (including spatial and seasonal variation) relative to sediment-water nutrient exchanges and oxygen consumption and the vertical rate of deposition of organic and inorganic particulates to deep waters and the sediment surface.
- determine the long-term trends that might develop in sediment water exchanges and vertical deposition rates in response to pollution control programs.
- 3) integrate the information collected in this program with other elements of the monitoring program to gain a better understanding of the processes affecting Chesapeake Bay water quality and its impact on living resources.

PROJECT DESCRIPTION

Sampling Locations

General

Sampling locations for both the sediment oxygen and nutrient exchange study (SONE) and the vertical flux study (VFX) are shown in Figures 1 and 2. Brief descriptions and exact locations of SONE and VFX stations are given in Tables 1 and 2 and referenced to OEP station numbers. Four of the 10 stations sampled as part of the SONE study are located along the salinity gradient in the mainstem Bay between Point No Point (north of the mouth of the Potomac River) and Still Pond Neck (20 km south of the Susquehanna River mouth). Two additional stations were located in each of three tributary rivers (Patuxent, Choptank and Potomac), one in the turbidity maximum or transition zone and one in the lower mesohaline region. The two stations monitored as part of the VFX study were located in the mainstem of the Bay, one near the upstream point in which anoxic conditions exist (during summer periods) and one in the central anoxic region (Fig. 2).

Justification of Station Locations

Locations of SONE stations (Fig. 1 and Table 1) were selected based on prior knowledge of the general patterns of sediment-water nutrient and oxygen exchanges in Chesapeake Bay. Several earlier studies (Boynton et al., 1980, 1984 and Boynton and Kemp, 1985) reported the following: 1) along the mainstem of the Bay fluxes were moderate in the upper Bay, reached a maxima in the mid-Bay and were lower in the higher salinity regions and, 2) fluxes in the transition zone of tributaries were larger than those observed in the higher salinity downstream portions of tributaries. Hence, a series of stations were located along the mainstem from Still Pond Neck in the upper Bay to Point No Point near the mouth of the Potomac River. A pair of stations were established in three tributaries (Potomac, Patuxent, and Choptank), one being in the transition zone and one in

Bay Segment	Station Name	Code Name (Nearest OEP Station)	General Location	Latitude & Longitude	Total Depth, m	Salinity Characteristics
Patuxent River	Ruena Vista	Bu. Vista (XDE 9401)	0.75 naut. mi N of Rt. 231 Bridge at Benedict, MD	38 ⁰ 30.96 ¹ 76 ⁰ 39.85	3-4	Oligohaline
	St. Leonard Creek	St. Leo (XDE 2792)	7.5 naut. mi of upstream of Patuxent River mouth	38 ⁰ 22.74 76 ⁰ 30.08	6-7	Mesohaline
Choptank River	Windy Hill	Wind. HL (None)	10.0 naut. mi upstream of Rt. 50 bridge at Cambridge, MD	38 ⁰ 41.43 75 ⁰ 58.42	3-4	Oligohaline
	Horn Point	Horn. Pt (MET5.2)	4.0 naut. mi downstream Rt. 50 Bridge at Cambridge, MD	38 ⁰ 37.07 76 ⁰ 07.80	7-8	Mesohaline
Potomac River	Maryland Point	Md. Pt (XDA 1177)	1250 yds. SE of buoy R-18	38 ⁰ 21.36 77 ⁰ 11.52	9-10	Oligohaline
ų i	Ragged Point	Rag. Pt (XBE 9541)	l.5 naut. mi WNW of Ew "51B"	38 ⁰ 09.77 76 ⁰ 35.58	13-14	Mesohaline
Chesapeake Mainstem	Still Pond	Stil. Pd (MCB2.2)	700 yds W of channel marker "41"	37 ⁰ 20.91 76 ⁰ 10.87	9-10	Oligohaline
	Buoy R-78	R78 (MCB3.3C)	200 yds NNW of channel buoy "78"	38 ⁰ 57.28 76 ⁰ 23.58	15-16	Oligo-Meso haline
	Buoy R-64	R-64 (MCB4.3C)	300 yds NE of channel buoy R-64	38 ⁰ 33.60 76 ⁰ 25.64	15-16	Mesohaline
	Point No Point	Pt. No. Pt (MCB5.2)	3.2 naut. mi E of Pt. No Pt.	38 ⁰ 07.98 76 ⁰ 15.10	13-14	Mesohaline

Table 1. Locations and descriptions of stations sampled as part of the Ecosystem Processes Secument oxygen and Nutrient Exchange Project (SONE).

1 Seconds of latitude and longitude are expressed as hundrethy of a necond.

Station Name	Code Name (Nearest OEP Station)	General Location	Latitude & Longitude	Total Depth, m	Salinity Characteristics
Buoy R-78	R-78 (MCB3.3C)	200 yds NNW of channel buoy R-78	38 ⁰ 57.28 ¹ 76 ⁰ 23.58	15-16	Oligo-Meso haline
Buoy R-64	R-64 (MCB43.C)	300 yds NE of channel buoy R-64	38 ⁰ 33.60 76 ⁰ 25.64	13-16	Mesohaline

Table 2. Locations and descriptions of stations sampled as part of the Ecosystem Processes Vertical Flux Project (VFX).

ì

1

]

· · · · }· · · ·

¹Seconds of latitude and longitude expressed as hundreths of a minute.

ł

the lower estuary. In all cases station locations were selected having depths and sediment characteristics representative of the estuarine zone being monitored.

In a few instances (Patuxent stations and Choptank station at Horn Point) SONE stations are not located exactly at the same site as other Maryland Chesapeake Bay Water Quality Monitoring Program stations, although they are close (\leq 10 km). The prime reason for this is that there is a considerable amount of benthic flux data already available from the SONE sites selected in the Patuxent and Choptank and these data can be used by the monitoring program. In all cases our stations and the OEP stations are in the same estuarine zone. Benthic fluxes have been found to be quite constant over small spatial scales (~10-20 km) given that measurements were taken in the same estuarine zone (similar salinity, sediments and depths) and hence this program retains a high degree of comparability with other program components (Boynton et al., 1982b).

The use of sediment trap methodology to determine the net vertical flux of particulate material is restricted to the deeper portions of the Bay. In shallower areas local resuspension of bottom sediments is sufficiently large to mask the downward flux of "new" material. Hence, sediment traps are not a useful tool in the upper reaches of the mainstem and in many tributary areas and are deployed only in mainstem areas. One array (R "64", Fig. 2) is positioned near the center of the region experiencing seasonal anoxia to monitor the vertical flux of particulate organics reaching deeper waters. This location is close to, but does not exactly coincide with, OEP stations in this area. Since sediment traps are fixed pieces of gear exposed to damage and/or loss by commercial boat traffic, a location was selected not regularly used by such vessels, but still close to the OEP station.

The second station was located farther north (R-78, Fig. 2), but still in the region experiencing seasonal anoxia. The magnitude and composition of sedimenting material differs from the down-Bay station because of the lower salinity and

proximity to the turbid upper Bay. Again, the location of this sediment trap station does not coincide exactly with the other water quality monitoring program stations in this region, although they are close. The justification for this is again based on the need to locate these sampling devices in areas not exposed to heavy commercial boat traffic.

Sampling Frequency

The sampling frequency for the SONE portion of this program is based on the seasonal patterns of sediment water exchanges observed in previous studies conducted in the Chesapeake Bay region (Kemp and Boynton, 1980; Kemp and Boynton, 1981; Boynton et al., 1982b; Boynton and Kemp, 1985). These studies indicated that there are several distinct periods over an annual cycle including: 1) a period influenced by the presence of a large macrofaunal community (spring-early summer), 2) a period during which macrofaunal biomass is low but water temperature and water column metabolic activity high and anoxia prevalent in deeper waters (August), 3) a period in the fall when anoxia was not present and macrofaunal community abundance low but re-establishing and 4) an early spring period (April-May) when the spring phytoplankton bloom occurs, and water column nutrient concentrations are high (particularly nitrate). Previous studies also indicate that short-term temporal (day-month) variation in these exchanges is small but that there are considerable differences in the magnitude and characteristics of fluxes among distinctively different estuarine zones (i.e. tidal fresh vs. mesohaline regions). In light of these results, the monitoring design adopted for the SONE study involves quarterly measurements, as described above, distributed in zones characteristic of mainstem Chesapeake Bay and tributary rivers.

The selection of sampling frequency for the VFX (organic deposition) monitoring program is governed by different constraints, although compatible with SONE sampling frequencies. It appears that net depositional rates are largest during the warm seasons of the year (May-October) and considerably lower during

winter periods (November-March). Resuspension of near-bottom sediments and organics in one tributary of the Bay (Patuxent) followed a similar pattern (Boynton et al., 1982b; Kemp and Boynton, 1984). However, there is some variability in warm season depositional rates, due probably to algal blooms (of short duration; days-week), variation in zooplankton grazing rates (week-month) and other, less well described, features of the Bay. Given the importance of obtaining inter-annual estimates of organic matter deposition rates to deep waters of the Bay, sampling is designed to be almost continuous during the summer period (July-August), of shorter duration during the generally smaller bloom periods of the spring and fall and only occasional during the low productivity, low depositional period of the winter (December-March). Direct measurements of organic deposition to Bay sediments is monitored 17 times per year. Vertical deposition rate measurements are coordinated with SONE measurements in that sediment-water exchanges are monitored at the end of each intensive VFX deployment period and also coincide with other Monitoring Program sampling activities. The sampling schedule for the period July 1984 - June 1985 is shown in Table 3 for this component of the Monitoring Program.

Field Methods

Details concerning methodologies have been described in the Ecosystem Processes Component Study Plan (Boynton et al,1985). The following section provides an overview of field activities.

SONE Study

Water Column Profiles: At each of the 10 SONE stations, vertical water column profiles of temperature, salinity and oxygen are obtained at 2 m intervals from the surface to the bottom immediately prior to obtaining intact sediment cores for incubation. Near-surface (~1 m) and near-bottom (~+1 m) water samples are also collected using a high volume submersible pump system. Samples are analyzed for the following dissolved nutrients and particulate materials:

sediment trap deployment

Sediment trap retrieval and deployment of new traps

sediment trap retrieval

1

duration of sediment-water flux monitoring

Table 3. Sampling frequency for the 1984-1985 Ecosystem Processes Component of the Biomonitoring Program.

ammonium (NH_4^+) , nitrate (NO_3^-) , nitrite (NO_2^-) , total dissolved nitrogen (DON), dissolved inorganic phosphorous (PO_4^{-3}) , dissolved organic phosphorus (DOP), silicious acid $(Si(OH_4))$, particulate carbon (PC), particulate nitrogen (PN), particulate phosphorous (PP), chlorophyll-<u>a</u> and seston.

Sediment Cores: Intact sediment cores are obtained at each SONE station using a modified Bouma box corer. After deployment and retrieval of the box corer, the plexiglass liner containing the sediment sample is removed and visually inspected for disturbance. If the core appears satisfactory it is placed in a holding stand prior to further processing.

Three intact cores are used to estimate net exchanges of oxygen and dissolved nutrients between sediments and overlying waters (Fig. 3). Prior to beginning incubation, the overlying water in the cores is replaced by bottom water to insure that water quality conditions in the cores closely approximates in-situ conditions. Gentle circulation of water is maintained in the cores during the measurement period via the stirring devices attached to the O_2 probes. The rate of circulation does not induce sediment resuspension. The cores are placed in a darkened water bath to maintain ambient temperature. Oxygen concentrations are recorded every 15 minutes and water samples (30 ml) are extracted from each core every 30 minutes over the 2-5 hour incubation period. As a nutrient sample is extracted from a core, an equal amount of ambient bottom water is added. One additional sample of bottom water is incubated and sampled as described above and serves as a water blank. Water samples are filtered, immediately frozen and later analyzed for NH4, NO3, NO2, PO_4^{-3} and Si(OH)₄ concentrations. Nutrient and oxygen fluxes are estimated by calculating the mean rate of change in concentration over the incubation period and then converting the volumetric rate to a flux using the volume: area ratio of each core.

SONE INCUBATION CHAMBER

Sediment Profiles: At each SONE station an intact sediment core is obtained and Eh measurements immediately made at 1 cm intervals to a depth of about 10cm. Once a year (October) sediments are sampled for vertical distribution of both dissolved and particulate nutrient concentrations and water content. Several intact sediment cores are obtained at each station using the Bouma box corer. Sub-cores are taken and later sliced at 1cm intervals to a depth of 10cm. Samples are analyzed for water content, particulate carbon (PC), nitrogen (PN), phosphorus (PP) biogenic silica (BSi), NH_4^+ , NO_3^- , NO_2^- , PO_4^{-3} and Si(OH)₄ concentrations.

VFX Study

At each of the VFX stations, water column profiles of temperature, salinity and oxygen are obtained at 2 m intervals from the surface to the bottom to characterize general features of the water column. Water samples are also collected at 5 discrete depths using a submersible pump system. Routinely, a sample is taken from near-bottom and near-surface waters, and the remaining three distributed such that one is just above, one just below and one at the pycnocline. Samples are analyzed for particulate materials including PC, PN, PP, chlorophyll-<u>a</u> and seston. These data provide descriptions of the particulate matter field at that moment and are useful in evaluating results developed from sediment trap collections.

<u>Sediment Sampling.</u> During each VFX monitoring cruise a surficial sediment sample (surface 1 cm) is obtained at each station using either a Van Veen grab or the Bouma box corer. Samples are analyzed to determine particulate carbon, nitrogen and phosphorus concentrations and chlorophyll-<u>a</u> content (mg m⁻²). Subsamples are also examined to determine the composition of surficial sediment particulates (e.g. algal species, zooplankton fecal pellets, etc.)

<u>VFX Sampling</u>. The sampling device used to develop estimates of the vertical flux of particulate materials is comprised of a lead or concrete

anchor-weight (~200 kg) connected to a stainless steel wire (0.8 cm diameter) which is maintained in a vertical position through the water column by a subsurface buoy (45 cm diameter; 40 kg positive buoyancy). The sub-surface buoy is tethered to a surface marker buoy by wire cable (Fig. 4). Collecting arrays are attached at about 5, 9 and 14 m beneath the water surface to obtain estimates of vertical flux of particulates from the surface euphotic zone to the pycnocline, flux across the pycnocline to deep waters and flux of materials associated with the near-bottom which includes local resuspension of sediments as well as net deposition.

The two sediment trap strings are routinely deployed and retrieved using CEES research vessels. Normal sampling periods last 1-2 weeks. At the end of a sampling period, collecting cups are retrieved either by SCUBA equipped divers or by hoisting the entire array to shipboard. In either case, cups are not capped prior to retrieval. New cups are then attached, fouling organisms removed from the frames and the array lowered back into the water.

The contents of a collecting cup are removed and aliquots taken for determination of PC, PN, PP, chlorophyll-<u>a</u> and seston concentrations. Additionally, a 10 ml sample is preserved and examined to determine characteristics of collected particulate material (e.g. algal speciation, zooplankton fecal pellets, etc.).

Particulate material concentrations in sampling cups are converted to vertical flux to the depth at which the collecting cup was suspended by consideration of the cross-sectional area of the collecting cup, deployment time and sample and subsample volumes.

Chemical Analyses

In brief, methods are as follows: NO_3^- , NO_2^- , NH_4^+ and PO_4^{-3} are measured using the automated method of EPA (1979); dissolved organic phosphorus (DOP) analysis uses the digestion and neutralization procedure of D'Elia et al. (1977)

followed by DIP analysis (EPA 1979); silicious acid is determined using the Technicon Industrial System (1977) method; dissolved organic nitrogen (DON) analysis follows the method of D'Elia et al. (1977); PP concentrations are obtained by acid digestion of muffled dry samples (Aspila et al. 1976) while PC and PN samples are analyzed using a model 240B Perkin-Elmer Elemental Analyzer; biogenic silica is measured using the method of Paasche (1973); methods of Strickland and Parsons (1972) and Shoaf and Lium (1976) are followed for chlorophyll <u>a</u> analysis; total suspended solids determination uses the gravimetric technique of EPA (1979).

Algal Identification

Identification of particulates is accomplished by microscopic examination (Nikon Inverted Microscope, Diaphot-TMD). Phytoplankton samples are allowed to settle for 3 or more days prior to concentration and subsequent analysis. Net plankton (<40 on longest axis) and nannoplankton are counted using the random field technique (Lund et al., 1958; Venrick, 1978), which requires a minimum of 10 fields to be enumerated with 200 cells or more present. This random field technique is done at 200x magnification, with species identification confirmed at 400x as required. Following the identification of more than 200 cells via random field analysis, a 100X scan is made of the entire settling chamber to identify the large net forms and rare species present. Algae are identified to species where possible. Additionally, non-algal particles are also examined and identified (i.e. zooplankton fecal pellets, cysts, skeletal fragments) to further characterize the composition of depositing materials.

Level I Analysis

SONE Study

Each Level I report includes tabular listing of all variables measured. Specifically, at each SONE station sediment Eh, net sediment-water nutrient and oxygen flux, surface and bottom water dissolved nutrient concentrations and

vertical profiles (2M intervals) of dissolved oxygen, temperature and salinity are reported. Summary statistics (means, standard deviations) are provided for nutrient and oxygen flux data.

VFX Study

Each Level I report includes tabular listing of all variables measured. Specifically, at each VFX station deposition of particulate materials to collection cup depth, algal composition of collected material, characterization of surficial sediments, particulate material concentration in the water column and vertical profiles (2m intervals) of dissolved oxygen, temperature and salinity are reported.

<u>Sediment-Water Oxygen and Nutrient Exchange (SONE)</u>

Water Column Characteristics

Water column profiles of temperature, salinity and dissolved oxygen are provided in Appendix Table 1 for all SONE stations for the period August 1984-June 1985. Nutrient data for the same sites and time period are given in Appendix Table 2. Additionally, differences between surface and bottom water concentrations of these variables are summarized in Table 4.

Bottom salinities ranged from 0.7 ppt at Still Pond in May to 19.8 ppt at R-64 in August and were generally higher during the summer-fall period than in spring, as expected. Vertical differences in salinity were greatest at the deeper stations (>14m) and were most pronounced in August, 1984.

Bottom water oxygen concentrations ranged from near-zero at deeper stations in August to 9.0 mg/l at Horn Pt. in October. Concentations were lowest in summer and highest in fall. Vertical differences in oxygen concentration were very pronounced (Δ 0₂=2.4-9.3 mg/l) at the deep stations throughout the sampling period and much less pronounced at the remaining sites, particularly in May and June. In general, oxygen as well as nutrient gradients were largest at sites where the vertical salinity gradient was large indicating the importance of density structure on water quality conditions.

Bottom water dissolved nutrient concentrations were quite variable, probably reflecting the complex interactions of various sources, sinks and water column density structure. However, several patterns emerged. Generally NH_4^+ concentrations were highest, and at times very high (>20uM), at the deep stations, particularly in August and June. Nitrate

21 ----

	selected vari bottom value.	ables. N	egative sign	indicates su	rface valu	e exceeded	3
STATION	DATE	STATION DEPTH	SALINITY (0/00)	$\frac{O_2}{(\text{mg } 1^{-1})}$	NH4 (UM)	NO ₃ (uM)	POA (UM)
St. Leo	Aug-84 Oct May-85 June	7	3.5 1.2 1.0 0.4	5.6 2.1 1.2 2.0	9.0 3.7 2.9 3.5	0.3 2.0 5.9 0.6	0.4 0.2 0.0 0.0
Bu.Vista	Aug-84 Oct May-85 June	4	0.1 0.7 1.0 0.2	0.5 0.0 1.1 1.0	1 0.1 -0.5 0.2	0.0 -0.1 -3.9 -0.1	.2 0.0 -0.3 0.0
Horn Pt.	Aug-84 Oct May-85 June	8	1.4 0.5 1.4 0.2	2.9 1.8 0.1 0.5	7.3 -1.5 -0.1 1.1	0.6 1.9 -0.2 0.6	0.0 -0.2 0.0 0.1
Wind Hl	Aug-84 Oct May-85 June	4	0.3 3.1 0.3	0.3 0.2 0.2 N	0.1 -3.7 -0.3 O DATA	0.0 -0.8 -1.7	0.2 0.0 0.5
Rag Pt.	Aug-84 Oct May-85 June	15	8.5 3.1 4.4 4.7	7.6 2.4 6.8 7.1	19.0 7.2 7.5 15.7	0.4 0.3 3.1 0.2	1.6 0.1 0.0 1.4
Md. Pt	Aug-84 Oct May-85 June	10	0.2 1.9 0.9 2.0	1.2 1.4 1.0 2.1	1.2 1.8 2.8 3.2	1.3 -7.1 -7.4 -7.2	0.6 0.0 0.0 0.2
Pt.No.Pt	Aug-84 Oct May-85 June	14	7.5 3.8 1.3 1.3	6.8 3.9 3.7 6.9	19.8 6.6 3.6 12.1	0.0 -3.1 -5.8 0.1	0.9 0.1 0.0 0.2
R-64	Aug-84 Oct May-85 June	17	6.8 6.0 3.4 1.7	7.4 5.7 4.5 9.3	22.2 9.7 3.2 21.8	-0.8 -8.7 -11.8 0.2	1.2 0.2 0.0 0.1
R-78	Aug-84 Oct May-85 June	17	6.0 6.8 3.4 3.9	6.5 4.3 7.4 5.9	10.2 8.4 4.0 19.1	-0.7 -6.0 -6.1 -7.1	0.1 -0.1 0.0 0.2
Stil.Pd	Aug-84 Oct May-85 June	10	0.8 3.7 0.1 1.9	0.8 2.0 0.3 1.1	0.7 5.0 0.8 0.9	-1.0 -12.9 -0.4 -5.0	0.1 0.1 0.0 0.1

TABLE 4. Differences between surface and bottom water concentrations of

concentrations were consistantly higher at low salinity sites then in mid-bay regions reflecting the riverine source of this compound. Nitrate concentrations in surface waters were also generally somewhat higher than bottom concentrations, indicating the importance of physical circulation on the distribution of this nutrient (Table 4).

Concentrations of dissolved inorganic phosphorous (DIP) appeared to be somewhat higher during the summer and late spring than other times. Tributary values were not noticeably different than those observed at other sites, as was the case of NO_3^- . Finally, vertical differences in DIP were small, except during late summer at some of the deeper stations (Table 4).

Sediment Characteristics

Sediment profiles of Eh and particulate nutrients concentrations are given in Appendix Table 3 for all SONE stations for the period August 1984-June 1985. The redox status of surficial sediments can have an important influence on the nature and magnitude of sediment-water nutrient exchanges and hence these data are of considerable importance in interpreting benthic flux data. For example, under oxidizing conditions (+Eh) the potential exists for enhanced ammonification and nitrification, while under reducing conditions (-Eh) denitrification is possible (assuming NO_3^- is available) and release of DIP from sediments may be enhanced.

Measurements of Eh in surficial sediments (1-2 cm) exhibited strong seasonal and spatial trends. In these sediments Eh was highest in the fall(+264 to 364 mV) and generally decreased through the spring to minimum values in late summer (-142mV). Additionally, with few exceptions, Eh values were lower at the deep stations, particularly in August and June. The depth in the sediment column to which positive Eh values were observed also exhibited strong patterns. For example, in

August Eh was negative at all stations below 1 cm. However, in spring and fall positive Eh values were observed to depths of at least 8 cm at the shallow stations (<10m). At the deeper stations positive Eh values were observed at sediment depths of 7, 5 and 3 cm in October, May and June, respectively. Thus, during the first year of monitoring a strong sesonal cycle was observed wherein Eh was highest during the fall and steadily decreased to a summer minimum and was most pronounced at the deeper stations.

There was considerable variability in particulate nutrient concentrations in surficial sediments, possibly as a result of aperiodic depositional events and a complex of regenerative processes. Particulate carbon values (% of dry sediments by weight) ranged from 1.1 to 10.4% but values in the range of 2-4% were very common. Additional insights regarding the sources of deposited organic particulates can be gained by examining the relative amounts of carbon, nitrogen and phosphorous in this material. For example, phytoplankton typically have composition ratios (C:N:P) on the order of 100:16:1 (atomic) while terrestrial detritus ratios are generally much higher.

Several interesting patterns emerged. First, there is evidence of substantial P enrichment in surficial sediments at the upper river sites in the Patuxent and Potomac (C:P = 42-62) but not in the Choptank. While it is not clear why this pattern was not observed in the Choptank, low ratios (relative to probable source materials) may be the result of P sorbtion- flocculation reactions known to occur in low salinity estuarine sites. Ratios of C:P closely approximated phytoplanktonic detritus at most mid-bay and lower tributary stations (C:P = 103-172) and was usually higher at the upper bay stations, suggesting a mixture of terrestrial and phytoplanktonic detritus in deposited materials.

Ratios of C:N ranged from about 7 to 26 during the monitoring period. Nitrogen enrichment relative carbon was never observed assuming deposited material to me mainly phytodetritus. Surficial sediments at tributary stations had C:N ratios which were commonly less than 10 while at upper tributary stations values were more often between 10 and 20. However, deep stations (>14m) always had C:N ratios of less than 10 while the upper bay station always had ratios in excess of 18, again possibly reflecting the influence of terrestrial material or more rapid loss of nitrogen. As with Eh measurements, there are some strong signals in the composition ratio data which will be of utility in interpretation of sediment-water flux data.

Sediment-Water Nutrient Exchanges

Sediment-water fluxes of oxygen (O_2) , ammonium (NH_4^+) , nitrate (NO_3^-) , dissolved inorganic phosphorous $(PO_4^- \text{ or DIP})$ and silica (Si) are provided in Appendix Table 5 and average rates (n=3) are shown in Fig. 5 for each station and date. The nutrient and O_2 concentration data from which fluxes were calculated are given in Appendix Table 4 for the monitoring period August, 1984-June 1985.

Sediment Oxygen Demand: During the monitoring period SOD ranged between $0.45-3.9gO_2m^{-2}d^{-1}$, being comparable to rates observed in other estuarine systems. Rates were higher in tributary areas than in the main-stem bay and, with few exceptions, were higher during spring-early summer than late summer-fall. In a qualitative fashion there appears to be some dependency of the magnitude of SOD on O_2 concentration in overlying waters. For example, SOD was always less than $0.7gO_2m^{-2}d^{-1}$ under conditions where overlying water O_2 concentrations were less than 2.5 mg/l. However, there were numerous occasions wherein SOD was of a similar magnitude and O_2 concentrations were much higher suggesting that factors other than O_2 in overlying waters were also influencing the

observed fluxes.

Ammonium Flux: During the monitoring period NH_4^+ fluxes ranged from 0 to 435 ug-at N m⁻²h⁻¹. Fluxes at almost all stations were lowest during the fall and higher in the early and late spring. In general, NH_4^+ fluxes were higher at the deeper stations, particularly those in the main-stem area of the bay. Preliminary inspection of NH_4^+ fluxes relative to other variables suggests possible relationhips with the particulate nitrogen content of surficial sediments as well as Eh.

<u>Nitrate Flux:</u> Nitrate fluxes were directed both from and into sediments and ranged from -100 to + 147 ug-at N m⁻²h⁻¹. In general, NO₃⁻ fluxes were from sediments to the water column at tributary sites in the Patuxent and Choptank. At other sites NO₃⁻ fluxes were predominently from water to sediments, particularly at locations where there was appriciable NO₃⁻ in overlying waters. (>5 uM) Earlier we noted that Eh of surficial sediments was highest at most stations in October, providing oxidizing conditions necessary for nitrification. Consistent with this oservation, NO₃⁻ fluxes were from sediments to water during this cruise at all but 2 locations suggesting widespread nitrification. Overall, NO₃⁻ fluxes were of sufficient magnitude to have an appreciable impact on dissolved nutrient concentrations in overlying waters.

Dissolved Inorganic Phosphorous Flux (DIP): Fluxes of DIP ranged from -28 to 87 ug-atPm⁻²h⁻¹. In the majority of instances, fluxes were directed from sediments to the water column and values in the range of 5-15 ug-atPm⁻²h⁻¹ were common. Fluxes directed into sediments were only observed during the August 1984 cruise at tributary sites. While the reason for this is not clear, DIP fluxes into sediments in these regions are consistent with the often observed rapid decrease in DIP concentrations in overlying waters in low salinity estuarine areas and

may involve sorption-flocculation processes. On occasion large fluxes from sediments were observed and all of these occurred at deep stations here O_2 concentrations in overlying waters were less than 2 mgl⁻¹.

<u>Silicious Acid Flux (Si)</u>: Fluxes of Si ranged from 140 to 956 ug-at Si $m^{-2}h^{-1}$. While highest fluxes were observed at deep main-stem bay sites in the late spring, high fluxes were also recorded at other sites in various seasons. No obvious seasonal or spatial patterns were evident but the magnitude of these fluxes were sufficient to have a considerable impact on Si concentrations in overlying waters.

Sediment Traps (VFX)

Vertical distributions of particulate deposition rates for fixed-depth sediment traps followed a relatively consistent pattern for all particulate constituents analyzed (PC, PN, PP, Chl-<u>a</u>, dry wt.). Deposition rates for the upper and middle traps were similar at Sta. R64, while at R78 middle traps collection rates were generally 20-30% higher than those for the upper traps (Data Table 8). Bottom traps, deployed at 2 m above the sediment surface, collected particulates at 10-15 times higher rates for both stations. These higher rates are probably attributable to wave and tidal resuspension of bottom sediments from below or from adjacent shoal areas (Steele and Baird 1972, Kemp and Boynton 1984, Ward 1985).

Carbon and chlorophyll-<u>a</u> deposition rates were both 20-80% higher at R78 compared to the seaward Sta. R64 (Table 5). Although chlorophyll-<u>a</u> concentrations were similar at both stations, higher rates of primary production at R78 (at least during the summer period) may account for observed differences in deposition. Two periods of high sedimentation rates were evident at both stations for both carbon and chlorophyll-<u>a</u>, one in summer (Aug-Sept) and one in spring (Apr-May). However, while the C:Chl ratios for deposited material varied from 100-300 in the summer, C:Chl remained

1

1

TABLE 5. Plankton production, chlorophyll a abundance and carbon and chlorophyll a deposition to sediment traps located just above the pycnocline at two Chesapeake Bay Stations.

;

ł

}

)] }

×.

1

)

1

R78 R64										
	WATER COLUMN		SEDIMENTATION		WAT	WATER COLUMN			SEDIMENTATION	
DATE	$PROD^*$ (gCm ⁻² d ⁻¹)	(mgm ⁻³).	CHLA (mgm ⁻²)	PC (gm ⁻² d ⁻¹)	CHLA (mgm ⁻² d ⁻¹)	$\frac{PROD^*}{(gCm^{-2}d^{-1})}$	(mgm ⁻³)	CHLA (mgm ⁻²)	(gm ⁻² d ⁻	$(mgm^{-2}d^{-1})$
23 Jul 84	-	22.9	118	1.12	10.8	-	22,9	139	0.40	3.8
30 Jul 84		22.4	107	0.95	5.9	-	20.9	135	0.26	2.1
7 Aug 84	6.88	24.4	38	0.74	3.1	3.94	22.0	95	0.45	2.2
14 Aug 84	_	21.3	93	0.69	3.1	_	10.4	60	0.55	2.2
22 Aug 84	3.44	9.8	60	1.02	2.7	3.73	8.0	56	0.83	2.4
30 Aug 84	3.21	10.2	62	-	_	0.43	7.5	43		-
17 Sep 84	2.03	5.5	37	1.13	8.5	0.93	16.7	122	0,60	5.4
24 Sep	-	19.2	130	1.60	5.5	_	6.0	60	0.87	4.2
4 Oct	2,81	4.9	30	0.93	3.9	2.54	5.3	41	0.61	5.1
16 Oct	0.32	9.9	52	-	-	0.81	6.9	35	_	-
30 Nov	0.12	2.7	29	0.88	2.2	0.61	2.6	21	т	RAP
17 Dec	0.50	5.2	29	-	-	0.15	3.3	32	L	OST
19 Feb 85	_	8.9	82	0.85	6.6	_	6.8	77	0.66	5.1
5 Mar 85	0.67	7.1	121	-	-	1.00	5.1	67	_	_
1 Apr 85	-	7.9	215	-	-	-	31.3	310	1.07	16.4
15 Apr 85	-	19.6	257	-	-	-	29.2	244	-	_
30 Apr 85	-	21 9-11	-	TRA	2	-	13.1	157	1.16	10.9
7 May 85	-	-	-	LOST	e	-	10.3	106	_	-
27 May 85	_	14.6	63	0.79	5.6	-	5.6	31	0.40	3.6
5 Jun 85	_	15.4	71	0.62	3.8	-	36.5	165	0.48	4.8
18 Jun 85	-	24.9	126	0.76	5.5	-	14.8	97	0.69	5.4
25 Jun 85		18.3	137				15.8	113		

* Data from OEP Report of Sellner et al. (1985).
**Integrated from 0-9m

consistently at or below 100 during the spring (Data Table 10). The same pattern was evident in the composition of bottom-water (15 m) seston (Fig. 6). These springtime C:Chl ratios are typical of those reported for healthy algal cells, whereas the higher ratios in summer are more indicative of algal detritus (e.g. Chervin et al. 1981). Thus, it appears that much of the springtime deposition was composed of intact algal cells, whereas material sinking from the euphotic zone in summer was largely phytodetritus, probably including zooplankton fecal pellets. Qualitatively similar seasonal cycles of deposition have been reported for other coastal areas (Smetacek et al. 1978; Smetacek 1980; Hargrave and Taguchi 1978).

The two seasons of high sedimentation rates coresponded generally to periods of high phytoplankton abundance (as Chl-a). However, the fact that peak chlorophyll-a concentrations were 2-3 times higher in spring than summer, while carbon deposition was only 20-50% higher in spring (Table 5), further supports the concept that sinking of intact algal was the dominant mechanism of organic deposition in spring (Smetacek 1985). Patterns of primary production in the water overlying our sediment traps during July-Feb. (Sellner et al. 1985) correspond reasonably well with temporal trends of sediment trap collection; however, production data are not yet available for spring 1985. In general, carbon deposition (trap collections) represented about 30-50% of the carbon production in overlying water during summer. These percentages are similar to those reported for various other marine systems (Smetacek 1980; Tabuchi 1982; Bishop and Marra 1984; Davies and Payne 1984; Downes and Lorenzen 1985.)

Comparing particulate composition ratios (C:N, N:P, C:Chl) for seston in surface waters (1-3 m) and for material in mid-depth traps (located just above the pycnocline) for Sta. R78 and R64, several trends are evident (Data Table 10). In general, C:N ratios remained between 6 and 8 throughout the year for

Fig. 6 Vertical distribution of particulate composition ratios (C:N, N:P, C:Chl a) for material in seston, in fixed sediment traps deployed at 3 depths, and in upper 1.0 cm of bottom sediments for four dates at station R64.

seston at both stations and for trap collections at Sta. R64. At Sta. R78, however, C:N ratios were consistently higher in trap material, typically exceeding 8. This indicates either rapid decomposition and loss of nitrogen from material in traps at that station, or alternatively, substantial inputs of resuspended material from bottom sediments caught in traps. This same pattern is reflected in N:P and C:Chl ratios, which were consistently lower and higher, respectively, in R78 traps. However, no such difference was observed at R64. A slight seasonal trend in N:P ratios was also evident, with highest and lowest values occurring in late spring and in early fall, respectively. Lower N:P ratios generally occurred when C:Chl ratios were highest, suggesting a predominance of partially decomposed detrital material and a rapid degradation of chlorophyll-a and release of nitrogen to the dissolved phase. Vertical distributions of particulate composition ratios indicate variable trends with depth and slight differences between seston and deposited material (Fig. 6, Data Table 10). C:N ratios of both seston and trap particulates tended to increase with depth in summer (7 Aug) and decrease with depth in spring (15 Apr). Trap material had increasing C:N ratios with depth over most of the year, while C:N of surficial bottom sediments was consistently higher (9-10) than that of other particulates sampled. Conversely, N:P ratios in seston and traps were very similar, with generally decreasing ratios at depth, except in April when ratios were 30-60% higher in seston. All C:Chl ratios increased markedly with depth, and trap ratios (especially at mid-depth) were similar to C:Chl ratios for seston in the upper layer.

With few exceptions, all composition ratios for material collected in mid-depth traps (just above the pycnocline)were within 20% of ratios for particulates in the upper water column, indicating both little change in composition of trapped material during deployment and minor inputs from resuspended bottom sediments. Using percent organic carbon as a robust tracer

for distinguishing between "tripton" (detritus originating in-situ or from terrestrial sources) and recently resuspended bottom sediments (Gasith 1975), we calculate that only 5-20% of the particulates collected in mid-depth traps originated from resuspension.

A broader perspective on the relationships between particulate deposition and other physical, chemical and biological processes can be inferred by considering seasonal patterns in sediment-trap data relative to patterns for other variables at R64 (Fig. 4, Table 3). Surface water temperatures ranged from 1.5° C (Feb) to 28.0° C (Aug), and vertical difference between surface (1 m) and bottom (15 m) salinities (Δ Sal) ranged from 1.7 (Jun 85) to 12.4 (Aug 84). Surprisingly little seasonality was apparent in these Δ Sal data.

Concentrations of NH₄⁺ were relatively high in summer and low in winter, and chlorophyll-<u>a</u> exhibited two distinct periods of high concentration in spring and summer, as indicated previously. While the summer bloom was characterized by high concentrations of chlorophyll-<u>a</u> in surface waters and low concentrations near the bottom, the spring bloom in surface waters was preceded by dramatic increases in bottom chlorophyll-<u>a</u>. Some of this increase may be due to subsurface upbay transport of dinoflagellates such as <u>Prorocentrum minimum</u> (Tyler and Seliger 1978). However, since the spring bloom at R64 was dominated by diatoms (Sellner et al. 1985), it is likely that much of the "seed" of algal cells was comprised of these larger cells concentrated and transported from seaward sources.

Diatoms, which are relatively large and non-motile, are more likely to fall from the euphotic zone as intact cells (Smetacek 1985). This explains the relatively low C:Chl ratios and slow (0.06 d-1) chlorophyll-<u>a</u> turnover rates (water column concentration divided by deposition rate) during spring. The smaller, often flagellated algal cells dominating the summer period are less susceptible to sinking as living cells. Thus, the material collected in sediment traps during summer was characterized by much higher C:Chl ratios

FIG. 7

Fig. 7. Seasonal trends at station R64: surface (1-3m depth) water temperature; vertical salinity difference from 1m to 15m depth; surface (1m) and bottom (15m) NH₄⁺ concentrations (from OEP, 1985); surface (1m) and bottom (15m) chlorophyll <u>a</u> concentrations; carbon and chlorophyll <u>a</u> deposition; chlorophyll <u>a</u> in upper 1.0cm of sediments; and bottom water (15m) 0₂ concentrations.
indicative of algal detritus. Higher temperatures in summer may have contributed to degradation of algal cells, and during this period chlorophyll-<u>a</u> did not appreciably accumulate on the sediment surface. In contrast, high sediment concentrations of chlorophyll-<u>a</u> accompanied the spring deposition event. Finally, low concentrations (<2 mg/L) of dissolved oxygen in bottom waters coincided with periods of intense organic deposition in summer, while a 1-2 month lag occurred between peak spring deposition and incipient hypoxia. Thus, organic decomposition and attendent O_2 consumption rates were evidently lower in spring than summer, despite high rates of organic deposition in both seasons.

Measurements of benthic remineralization rates, as indicated by O_2 and NH_4^+ fluxes across the sediment-water interface in SONE cruises, corroborate this pattern (Table 6). Rates of SOD and NH_4^+ regeneration were twice as great in summer as compared to spring. Mean values for the four SONE cruise dates indicate about 40% of the organic carbon deposited was oxidized via O_2 consumption, while over 70% of the particulate nitrogen deposition was regenerated as NH_4^+ . Similarly, Wassmann (1985) estimated that 20-60% of carbon deposited in a Norwegian fjord could be accounted for as SOD. The remainder of the material deposited may be buried or oxidized by sulfate, with subsequent sediment accumulations of iron sulfides.

We are encouraged that sediment trap collections at these two stations in Chesapeake Bay correspond both quantitatively and qualitatively to plankton populations and processes in the overlying waters. Similarly, temporal patterns of sediment oxygen demand and nutrient regeneration measured in SONE cruises were proportional to organic deposition rates measured in this VFX program. Finally, concentrations of O_2 and nutrients in bottom waters of the Bay appear to be inversely related to sedementation and metabolic processes of the benthos.

	<u>Particle</u> Der	position*	Benthic Rem	ineral	ization	
DATE	Carbon (mgCm ⁻² d ⁻¹)	Nitrogen (mgNm ⁻² d ⁻¹)	SOD [#] (mgCm ⁻² d ⁻¹)	Frac. Dep.	NH4 [†] Flux (mgNm ⁻² d ⁻¹)	Frac. Dep.
29 Aug 84	828	145	450	54%	89**	61%
~16 Oct 84	605	89	300	49%	47	53%
5 May 85	1164	173	319	27%	64	37%
27 Jun 85	687	108	150	22%	168	100%+

TABLE 6. Estimated fraction of particulate carbon and nitrogen deposition remineralized in sediments of Station R64.

* Based on sediment-trap collections from deployments just above pycnocline during week preceeding measurements of benthic O_2 and NH_4^+ fluxes.

SOD is sediment oxygen demand; carbon equivalent calculated assuming a respiratory quotient of 1.0 mol CO₂/mol O₂.

* Nh₄⁺ flux on this date estimated from concentration change in water over core prior to reduction of dissolved oxygen below 2 mg/l.

REFERENCES

- Aspila, I., H. Agemian and A.S.Y. Chau. 1976. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101:187-197.
- Bishop, J.K.B. and J. Marra. 1984 Variations in primary production and particulate carbon flux through the euphotic zone. J. Mar. Res. 42:189-206.
- Boynton, W.R., W.M. Kemp and C.W. Keefe. 1980. Nutrient fluxes across the sediment water interface in the turbid zone of a coastal plain estuary. Pages 93-109 in V.S. Kennedy [ed.], <u>Estuarine Perspectives</u>, Academic Press, New York.
- Boynton, W.R., W.M. Kemp and C.W. Keefe. 1982a. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production. Pages 69-90 in V.S. Kennedy [ed.], <u>Estuarine Comparisons</u>, Academic Press, New York.
- Boynton, W.R., W.M. Kemp, C.G. Osborne, E. Spalding, C.W. Keefe and K.V. Wood. 1982b. Estuarine community dynamics in relation to power plant operations. Univ. Md. Cntr. Environ. Estuar. Stud. Ref. No. 82-78. Solomons, Md.
- Boynton, W.R., W.M. Kemp, L. Lubbers, K.V. Wood and C.W. Keefe. 1985. Ecosystem Processes Component. Pilot Study, June-July 1984. Ref. No. [UMCEES] CBL 85-3.
- Boynton, W.R., W.M. Kemp, et al. Ecosystem Processes Component Study Plan. UMCEES-CBL Ref. No. 85-16.
- Boynton, W.R. and W.M. Kemp. 1985. Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient. Mar. Ecol. Progr. Ser. (in press).

- Chervin, M.B., T.C. Malone and P.J. Neale. 1981. Interactions between suspended organic matter and copepod grazing in the plume of the Hudson River. Estuar. Coast. Sh. Sci. 13:169-184.
- Davies, J.M. and R. Payne. 1984. Supply of organic matter to the sediment in the northern North Sea suring a spring bloom. Mar. Biol. 78:315-324.
- D'Elia, C.F., P.A. Steudler and N. Corwin. 1977. Determination of total nitrogen in aqueous samples using persulfate digestion. Limnol. Oceanogr. 22:760-764.
- D'Elia, C.F., J. Nelson and W.R. Boynton. 1983. Chesapeake Bay nutrient and plankton dynamics: III. The annual cycle of dissolved silicon. Geochim. Cosmochim. Acta 14:1945-1955.
- Downs, J.N. and C.J. Lorenzen. 1985. Carbon:phaeopigment ratios of zooplankton fecal pellets as an index of herbivorous feeding. Limnol. Oceanogr. 30:1024-1036.
- Environmental Protection Agency (EPA). 1979. Methods for Chemical Analysis of Water and Wastes. USEPA-600/4-79-020. Environmental Monitoring and Support Laboratory, Cincinnati.
- Hargrave, B.T. 1969. Similarity of oxygen uptake by benthic communities. Limnol. Oceanogr. 14:801-805.
- Kemp, W.M. and W.R. Boynton. 1980. Influence of biological and physical factors on dissolved oxygen dynamics in an estuarine system: implications for measurement of community metabolism. Estuarine Coastal Mar. Sci. 11:407-431.
- Kemp, W.M. and W.R. Boynton. 1981. External and internal factors regulating metabolic rates of an estuarine benthic community. Oecologia 51:19-27.
- Kemp, W.M. and W.R. Boynton. 1984. Spatial and temporal coupling of nutrient inputs to estuarine primary production: the role of particulate transport and

decomposition. Bull. Mar. Sci. (in press).

- Lund, J.W.G., C. Kipling and E.D. LeCren. 1958. The inverted microscope method of estimating algae numbers and the statistical basis of estimations by counting. Hydrobiologica 11:143-170.
- Nixon, S.W. 1981. Remineralization and nutrient cycling in coastal marine ecosystems. Pages 111-138 in B.J. Neilson and L.E. Cronin [eds.], <u>Estuaries</u> and <u>Nutrients</u>, Humana Press, Clifton, New Jersey.
- Paasche, E. 1973. The influence of cell size on growth rate, silica content, and some other properties of four marine diatom species. Nowr. J. Bot. 20:197-204.
- Sellner, K. et al. 1985. Phytoplankton and microzooplankton data summary. OEP Report. Acad. Nat. Science Benedict Estuar. Res. Lab., Benedict, MD.
- Shoaf, W.T. and B.W. Lium. 1976. Improved extraction of chlorophyll <u>a</u> and <u>b</u> from algae using Dimethyl Sulfoxide. Limnol. Oceanogr. 21:926-928.
- Smetacek, V. 1985. Role of sinking in diatom life-history cycles: Ecological, sevolutionary and geological significance. Mar. Biol. 84:239-251.
- Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of seawater analysis. Bull. 167 (second edition), Fisheries Research Bd. Canada, Ottawa, Canada.
- Taguchi, S. 1982. Sedimentation of newly produced particulate organic matter in a subtropical inlet, Kaneohe Bay, Hawaii. Estuar. Coast. Shelf Sci. 14:533-544.
- Technicon Industrial Systems. 1977. Silicates in water and seawater. Industrial Method No. 186-72W/B. Technicon Industrial Systems, Terrytown, NY. Venrick, E.L. 1978. How many cells to count. In: A. Sournia (ed).

Phytoplankton Manual. UNESCO Publ. Page Brothers Ltd., Paris, pp. 167-180.

Data Table No. 1-1

5

BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2DPROF(Vertical profiles of temp., salinity and oxygen conc. at SDNE stations)

			TOTAL	SAMPLE			
STATION			DEPTH	DEPTH	TEHP	SALINITY	DISS.DXY
LOCATION	DATE	TIME	(g)	(a)	(30)	(ppt)	(£\pa)
ST.LEO	27-AUG-84	940	6.7	0.5	25.3	7.B	7.80
				2	25.40	10.50	7.30
				4	25.30	10.80	5.90
				6	24.70	13.30	2.20
RU, VISTA	27-AU6-64	1335	3.6	0.5	25,80	8.80	7,50
				2	25.90	8.90	7.20
				3	25.80	8.90	7.00
HORN.PT	29-AUG-84	1025	7.2	0.5	25.20	11.20	6.25
				2	25.10	11.50	5.60
				4	24.80	12.00	4.40
				6	24.70	12.60	3.60
				6.7	24.70	12.60	3.40
WIND.HL	29-AUG-84	1255	3.6	0.5	25.60	4.90	6.50
•	•			1	25.60	4.80	6.50
				2	25.20	4.90	5.20
				3	25.40	5.10	6.20
RAG.PT	28-AUG-84	1145	13.2	0.5	25.10	8.50	7.90
				2	24.60	8.50	7.50
				4	24.80	8.50	7.10
				6	24.50	8.60	6.80
				8	24.70	9.10	5.90
				10	24.40	9.40	5.20
				12	24.30	16.50	0.40
•				13	24.10	17.00	0.30

			TOTAL	SAMPLE			
STATION			DEPTH	DEPTH	TEHP	SALINITY	DISS.OXY
LOCATION	DATE	TIME	(s)	(e)	(00)	(ppt)	(mg/l)
HD.PT	28-AUG-84	1720	9.8	0.5	26.20	2.20	7.40
				2	25.90	2.20	7.40
				4	25.80	2.30	7.30
				6	26.00	2.20	7.30
				8	25.60	2.40	6.50
				የ	25.70	2.40	6.20
PT.NO.PT	28-AUG-84	700	13	0.5	24.70	11.50	7.20
				2	25.00	11.80	7.10
				4	25.00	11.80	7.10
				6	25.00	11.BO	7.10
				8	24.90	13.90	4.20
				10	24.90	16.50	1.50
				12	25.10	19.30	0.40
R~64	29-AUG-84	745	16	0.5	24.50	13.00	7.80
				2	24.40	12.70	7.70
				4	24.50	12.90	7.60
					24.50	12.90	7.30
•				8	26.50	13.00	7.00
				10	24.20	15.50	3.70
				12	23.90	17.60	1.40
				14	23.60	1R.90	0.50
				16	23.50	19.80	0.40
TOH.PT	30-AUG-84	1010	15.2	0.5	24.30	12.40	6.80
				2	24.30	12.40	6.80
				4	24.40	12.50	6.30
				Ł	24.20	12.60	5.90
				8	24.10	12.70	5.80
				10	24.10	12.70	5.70
				12	24.20	13.50	4.60
				14	23.20	16.50	3.30
				15.25	23.20	18.40	0.30
STIL.FD	30- AUG84	730	9.5	0.5	24.70	1.50	7.20
				2	24.90	1.20	6.70
				4	24.60	1.70	ć. 70
				6	24.60	1.70	6.50
				8	24.90	2.30	6.40
				9	24.90	2.30	6.40

BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2OPROF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

810howiiior H20prof (Ve	INBIONONIIORI rtH20PR0F(Ver	NG PROGRAM: (tical profile	SEDIMENT	DXYGEN i mpsalii	AND NUTRI nity and
		<i>,</i> , -, -, -, -, -, -, -, -, -, -, -, -, -,			
				TOTAL	SAMPLE
STATION	STATION			DEPTH	DEPTH
LOCATION	LOCATION	DATE	TIME	(m)	(æ)
ST.LEO	ST.LEO	17-0CT-84	1300	7.0	1.0
					3.0
					τA

NUTRIENT EXCHANGE COMPONENT (SGRE) ŝ y and oxygen conc. at SONE stations) Ц

.

TATION OCATION	STATION LOCATION	DATE	TIME	DEPTH (m)	DEPTH (@)	TEMP (oC)	SALINITY (ppt)	DISS.DXY (mg/l)
ST.LEO	ST.LEO	17-0CT-84	1300	 7.0	1.0	18.50	13.00	9.60
					3.0	18.40	12.90	9.50
					5.0	18.40	13.80	7.90
					6.5	18.40	14.20	7.50
BU.VISTA	BU.VISTA	17-0CT-84	1000	4.0	1.0	18.40	11.90	6.20
					2.0	18.30	11.50	6.20
					3.0	18.46	11.20	6.20
HGRN. P1	HORN.PT	15-0CT-84	1557	8.0	1.0	17.40	13.00	10. 8 0
					3.0	17.50	12.8 0	9.10
					5.0	17.20	13.00	9.20
					7.0	17.10	13.50	9.00
WIND.HIL	WIHE.HIL	15-0CT-84	1050	1. 0	1.0	17.30	5.80	8.70
					3.0	17.00	8.5V	8.70
					4.5	17.00	8.90	8.50
RAG.PT	RAG.PT	18-OCT-84	0820	15.5	1.0	18.20	12.40	8.58
					3.0	18.20	13.30	7.40
					5.0	18.20	13.60	7.05
					7.0	18.30	14.50	6.10
					9.0	18.40	14.70	6.00
					11.0	18.40	15.40	6. 00
					13.0	18.30	15.90	6.25
					15.0	18.20	15.50	6.25
M5.Pſ	HD.PT	18-OCT-84	1233	9.5	1.0	19.10	4.10	7.95
					3.0	18.80	4.30	7.50
					5.0	18.70	4.60	7.40
					7.0	18.70	4.90	7.05
					9.0	18.70	6.00	6.55
PT.NO.PT	PT.NO.PT	17-001-84	1650	13.4	1.0	18.30	15.30	10.55
					3.0	18.10	15.30	10.40
					5.0	18.30	16.20	9.20
					7.0	18.30	16.10	8.70
					9.0	18.20	15.40	8.40
					11.0	18.00	17.20	7.40
					13.0	18.20	19.10	6.60

No. 1-3

No. 1-4

Clohonitering:oneChitering program: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2OPROF(VertH2OPROF(Vertical profiles of temp.,salinity and pxygen conc. at SONE stations)

STATION	STATION			TOTAL DEPTH	SAMFLE DEPTH	1EMP	SALINITY	DISS.DXY
LOCATION	LOCATION	DATE	TIME	(m)	(@)	(oC)	(ppt)	(mg/1)
R-64	R-64	16-0CT-84	1540	19.0	1.0	17.70	12.80	10.40
					3.0	17.80	14.80	9.30
					5.ů	17.40	15.90	8.40
					7.0	17.30	16.10	8.30
					9.Ú	17.90	16 .5 0	8.10
					11.0	18.00	17.30	6. 90
					13.0	18.10	1/.50	á.30
					15.0	18.30	18.70	5.40
					17.0	18.40	19.60	5.10
					19.0	18.70	18.40	4.70
R-78	R-78	16-0CT-84	1100	1ċ.4	1.0	17.70	12.10	8.30
					3.0	17.B0	13.30	8.20
					5.0	17.90	14.10	8.20
					7.0	17.90	14.70	7.70
					9.0	18.00	13.50	7,20
					11.0	18.30	16.60	5.60
					13.0	18,50	18.40	4.60
					15.0	18.60	18.80	4.20
					15.8	18.80	18.90	4.00
STIL.PG	STIL.PD	16-0CT-84	0750	10.0	1.0	16.90	4.70	9.60
					3.0	16.90	5.40	5.10
					5.0	15.90	6.80	8.90
					7.0	17.10	7.20	8.10
					9.0	17.10	8.40	7.60

No. 1-5

DIGHOWITORINBIOHONITURING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGE COMPONENT(SOME) HZOPROF(VertHZOPROF(Vertical profiles of temp.,salinity and oxygen conc. at SOME stations)

STATION LOCATION	STATION Location	DATE	TIKE	TCTAL DEFTH (m)	SAHPLE DEPTH (m)	TEMP (oC)	SALINITY (ppt)	PISS.023 (mg/1)
ST.LE0	ST.LEO	6-MAY-85	0740	ó.á	1	18	10.5	7.65
i					3	18	10.5	7.3
					5	18	11.5	6.63
					6.5	17	11.5	5.45
BU.VISTA	BU.VISTA	5-MAY-85	1150	4	0	21.5	7.8	9.1
					2	20	8. 0	7 . 8
					4	19.8	8.8	7.95
HORN.PT	HORN.FT	7-HAY-85	Ę	9.5-10m	.5	17.5	10.4	8.2
					2	17.5	10.4	8.2
					4	17.5	10.4	8.2
					6	17.5	11.8	8.4
					7	17.5	11.8	8,1
WIND.WIL	WIND.RIL	7-MAY-85	705	4.2	5	19.5	6. 2	7.31
					1	19.1	6.4	7.20
					2	18.9	5,9	7.15
RAG.P1	RAG.P1	9-MAY-85	640	17	0.5	17.4	11.0	10.09
					2	17.4	11.0	10.02
					4	16.8	12.0	7.65
					6	iċ.8	12.1	7.31
					8	15.8	14.8	3.28
					10	15.6	15.0	3.00
					12	15.5	15.3	3.25
					14	15.ċ	15.4	3.40
					15.5	12.6	15.4	3.31
HD.FT	MD.PT	9-NAY-85	1025	10.8	0.5	19.5	3.1	7.77
					2	19.5	3.2	7.26
					4	19.3	3.8	7.05
					6	19.3	3.8	7.0
					8.5	19.4	4.0	6.82
P1.WO.PT	P1.NO.PT	8-MAY-85	1630	14.5	0.5	18.6	13.	9.61
					2	17.2	12.9	9.30
					4	17.	12.8	9.08
					6	16.8	12.8	9.03
					8	16.8	13.4	9.03
					10	10.0	13.6	5.ZU
					17 5	10.0 (c.n	13.3	7.33
					13.5	15.8	14.5	3.7

-

.

BIOHOMITERINGIONOMITERING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGE COMPONENT(SOME) H20PROF (VertH20PROF(Vertical profiles of temp.,salinity and oxygen cont. at SOME stations)

STATION LOCATION	STATION Location	DATE	TIME	TOTAL Depth (m)	SAMPLE Depth (m)	TEMP (oC)	SALINITY (ppt)	DISS.DXY (mg/1)
R-64	R-64	6-MAY-85	1720	16.8M	i	17	9.6	9.8
					3	17	9.5	9.8
					6	15.6	10.5	8.8
					9	15.	11.5	6. 7
					12	14.3	12.5	6.3
					15	13.8	13	5.3
R-78	R-78	7-HAY-85	1655	17H	.5	15.4	9.2	12.6
					2	16.4	9.2	12.2
					4	16.4	9.2	12.25
					6	16.4	7.2	ii.2
					5	16.0	9.8	10.65
					10	15.B	11.4	8.4
					12	14.0	11.5	6. 70
					14	13.8	11.9	5.70
					16	13.8	12.6	5.23
STIL.Fd	STIL.Fd	8 NAY-85	705	9.5	0.5	17.5	0.8	8.60
					2	17.5	0.3	8.49
					4	17.5	0.3	B. 49
					6	17.6	0.2	8.45
					8	17.7	0.3	8.42
					9	17.8	0.7	B.29

.

PIDMONITORINBIOMONITORING PROCRAM: SEDIMENT OXIGEN AND NUTRIENT EXCHANCE COMPONENT (SOME) H20FR0F(VertH20FR0F(Vertical profiles of temp.,salinity and oxygen conc. at SOME stationar

STATION LOCATION	STATION Location	DATE	TIME	TOTAL DEFTH (₪)	BAMPLE DEPTH (m)	TEMP (oC)	SALINITY (ppt)	DISS.OXY (mg/l)
St.Lec	Si.Leo	25-June-85	1100	7.5	0.5	24.8	12.8	6.12
					2	24.7	13	6.05
					4	24.6	13	5.80
					ó	24.5	13.2	4.12
Bu.Vista	Du.Vista	25-June-85	730	4.6	.5	25.5	11.2	5.5
					2	25.7	11.4	4.5
					3	25.7	11.0	4.5
Horn Pt.	Horn Pt.	26-June-85	700	8.2	.5	24.5	5.8	á.15
					2	24.b	5.9	6.20
					4	24.6	5.9	6.15
					6	24.8	ć. 0	5.85
					7	24.8	6.0	5.68
Rag. Pl	Ray. PL	24-Jane-85	920	16.5	.5	24.2	11.5	7.4
					2	24.2	11.5	7.2
					4	24.1	11.7	7.2
					ó	23.2	14.1	2.2
					8	23.1	14.3	0.4
					10	22.9	16.2	0.35
					12	22.3	16.2	0.3
					14	22.3	16.2	0.3
					15	22.3	16.2	
Hd.PT	Nd.PT	24-June-85	1320	9.6	0.5	25.9	4.2	6.8
					2	25.8	4.8	7.2
					4	25.3	5.5	5.3
					6	24.8	6.2	4.75
					8	24.7	6.2	4.7
PL.HO.PL	PL.NO.PL	24-June-85	1830	14.4	.5	25.2	14.8	8.72
					2	25.2	14.8	8.70
					4	24.1	14.5	8.35
					5	24.0	14.8	7.9
					8	24.0	14.8	7.4
					10	23.3	15.2	5.0
					12	22.7	1à.1	1.8
					13	22.6	16.1	1.8

. .

-

CIGNONITORINGIONCHITURING PROGRAM: SEDIMENT CXYGEN AND NUTRIENT EXCHANGE COMPONENT(SOME) H20FROF(VentH20FROF(Vertical profiles of temp.,salinity and oxygen conc. at SOME stations)

ETATION Location	strtion Location	DATE	TINE	TOTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP ((oC)	SALINIIY (ppl)	DISS.0XV (mg/l)
R-64	R::64	25-june-85	1540	17.5	0.5	25.7	13.8	9.85
					2	24.3	13.6	9.60
					4	24.0	13.2	8.60
					6	23.9	13.2	8.35
					8	23.8	13.2	8.12
					10	23.5	13.3	6.5 0
					12	22.4	14.0	3.05
					14	21.7	14.B	1.10
					16	21.6	15.5	0.55
R-78	R-78	27-June-85	1045	16.8	.5	22.5	10.8	7.48
					2	22.5	10.8	7.42
					4	22.6	10.7	7.20
					6	22.5	ii.i	ö.52
					8	22.4	12.5	4.72
					10	22.3	14.0	2.38
					12	21.8	14.5	1.90
					14	21.5	14.7	1.58
					15	21.5		0.92
Stil.Pd	Stil.Pd	26-June-85	1710	10.4	.5	23.7	1.7	7.02
				·	2	23.7	1.7	7.05
					4	23.7	1.7	6.95
					6	23.7	2.2	6.82
					8	23.6	3.6	6.10
				,	9	23.6	3.6	5.90

BIOMONITIORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) H2ONUTS (Surface and bottom water dissolved and particulate nutrient concentrations at SONE stations)

يسم																
				TOTAL			DISSOLV	ED NUTF	RIENTS				PARTIC	ULATE	5	
	STATION	DATE	TIME	DEPTH (a)	DEPTH (m)	NH4 (um n)	ND3+ND2 (uN_N)	TDN (um n)	DIP (um P)	TDP (um p	SI(OH)4)(uM Si)	PC (ug/1)	PN (ug/1)	PP (ug/l	CHLORO) (ug/1)	SESTON (mg/1)
	ST.LEO	27-8-84	940	6.7	0.5 6	1.9 10.9	0.12 0.38	27.35 17.25	0.33 0.69	0.38 0.07	72.8 63.5	2126 626	439 108	79.8 30.6	14.85 3.2	21.6 19.4
	BU.VISTA	27-8-84	1335	3.6	0.5 3	0.7 0.6	0.16 0.15	25.8 26.6	2.89 3.06	2.89 3.63	93 91	2463 2872	395 439	110 140	16.15 14.45	5 4 70
_	PT.NO.PT	28- 8-84	900	13	0.5 12	0.7 20.5	0.05 0.13	21.6 38.9	0.15 1.1	0.14 0.57	46.8 47.6	1078 1182	194 196	36.1 33.1	4.8 2.45	13 .8 33.2
-	RAG.PT	28-8-84	1145	13.2	0.5 13	0.3 19.3	0.39 0.75	21.6 46.75	0.83 2.42	0.75 2.72	62.1 57.6	1341 824	210 137	40 34.8	7.8 2.5	10.1 20.65
	HD.PT	28-8-84	1720	9.8	0.5 9	0.6 1.8	36.3	62.35 59.7	1.7 2.28	1.85 1.92	32.8 38.8	3438 2607	564 435	69.6 72.4	21.85 16.1	22 31.8
	R-64	29-8-84	745	15	0.5 16	3 25.2	0.92 0.18	28.35 44.9	0.09 1.29	0.07 0.89	50 48.2	947 1243	198 186	27.6 38.3	5.9 2.4	9.4 45.2
-	HORN.PT	29-8-84	1025	7.2	0.5 6.7	0.5 7.8	0.19 0.84	28.15 36.65	0.28 0.31	0.95 0.49	74.6	2108 938	409 179	70.1 37.5	20.25 4.25	21 28.4
	WIND.HIL	29-8-94	1255	3.6	0.5 3	0.4 0.5	0.15 0.2	29.3 27.6	1 1.23	1.67 1.76	37.5 39.6	3313 13847	470 1601	85. 2 375	18.4 23.4	37.25 272
_	STIL.PD	30-8-84	730	9.5	0.5 9	5.2 5.9	48.5 47.5	82.95 70.95	0.2 0.3	1.42 0.44	47.9 42.6	959 1189	136 162	32.2 38.2	6.25 6.4	16 21.8
_	TOM.PT	30-8- 84	1010	15.2	0.5 15.2	5.6 15.8	6.32 5.58	36.15 53.95	0.16 0.28	0.85 0.95	47.1	1287 565	247 110	50.2 27.6	10.15	17.2 16.8

BIOMONITIORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) H2ONUTS (Surface and bottom water dissolved and particulate nutrient concentrations at SONE stations)

			77741			DISSOLV	ED NUTF	IENTS				PARTICUL	ATES		
STATION	DATE	TINE	DEPTH (m)	DEPTH (m)	NH4 (uN N)	N03+N02) (um n)	TDN (um N)	DIP (um P)	TDP (um P	SI(OH)4)(um Si)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORO (ug/1)	SESTON (mg/l)
ST.LED	170CT84	1300	7	1 6.5	3	1.69 6.7	24.65 3.72	0.27	0.27	32.7	958.3 915.1	190.3 146	25.1 32.6	6.8 2.7	12.8 40.2
BU.VISTA	1700184	1000	4	1 3	8.4 8.5	2.97 2.87	29.3 31.35	1.41	1.46	47.3	703.2 686.4	153.6 140.7	30.B 39.3	3.i 2	20.3 29.8
HORN PT.	150CT 84	1557	8	1 8	2.9 1.4	0.17 2.1	24.85 21.8	0.21 0.02	0.39 0.02	22.8 23.9	1397 . 1 902	222.2 153.4	36.6 28.8	8 5.4	18\ 36. 8 35
WIND.HIL	150CT84	1050	4.6	1 4.5	5.5 1.8	6.66 5.94	30.85 26.45	0.85 0.94	2.64 1.52	32.3 38.7	1958.2 2060.3	331.6 281.6	63.2 48.4	7.1 5.8	35.B 43.4
RAG.PT	1800184	8 20	15.5	1 15	1.7 8.9	1.9 2.18	23.15 30.0	0.21 0.25	0.15	31.3 12.9	829.8 603.8	175.5 105.9	26.8 23.5	4.2 1.9	12 20.4
MD.PT	1BDCT84	1233	9.5	1 9	6.9 8.7	36.9 29.8	62.55 52.15	1.06 1.09	2.45 2.51	23.4 36.2	824.2 1901.1	135.7 251.6	36.3 67.4	3.4 3	11.4 65
PT.NO.PT	170CT84	1650	13.4	1 13	1.6 8.2	4.5 2 1.37	26.0 27 . 2	0.17 0.27	0.12 0.22	2.5 13.7	1025.8 524.9	160.5 89.1	20.2 19.2	9.8 2.9	16.2 24
R-64	170CTB4	1540	19	1 19	2.9 12.6	11.7 2.99	32.35 32.0	0.2 0.4	0.42 0.24	21.5	1270.5 629.2	212.1 101.3	27 21.3	9.9 3.6	15.3 28.1
R-78	160CT8 4	1100	16.4	1 15.8	6.1 14.5	8.04 2.02	38.35 38.0	0.16 0.41	0.52 1.22	25.1 24.3	812.1 581	171.B 97.9	28 27.7	6.9 2	13 37
STIL.PD	1600184	750	10	1 9	0.3 5.3	42.3 29.4	58.45 49.55	0.18 0.27	0.18 0.38	18.B 25.8	931.4 982.8	179.8 158.2	29.2 32.4	7.8 3.5	9.4 19

BIGMONITIORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) H2ONUTS (Surface and bottom water dissolved and particulate nutrient concentrations at SONE stations)

						DISSOLV	ED NUTF	IENTS				PARTICUL	ATES		
STATION	DATE	TIME	DEPTH (m)	DEPTH (m)	NH4 (um N	ND3+NO2) (um N)	tDN (um n)	DIP (uM P	TDP) (um p)	SI(OH)4)(uM Si)	PC (ug/l)	PN (ug/1)	PP (ug/1)	CHLORO (ug/1)	SESTON (mg/1)
ST.LEO	6-May-85	0740	6.6	0.5 6.5	1.4 4.3	0.7 6.6	27.0 35.5	.20 .17	1.28 1.29	7.8 8.0	991.0 808.6	2 54.5 162.8	16.6 17.1	8.9 6.3	12.3 10.9
BU.VISTA	6-May-85	1150	4	0.5 4	1.1	6.3 2.4	29.15 26.5	1.2 0.86	2.08 1.86	34.6 29.9	3135.1 2548.9	682.2 39 8 .0	74 76	41.45 28.7	34.6 45.5
HORN PT.	7-May-85	920	7.5	0.5	2.6 2.5	5.2 6.0	29.3 32.95	.11	1.16 0.4	3.3 3.0	860.4 734.2	257.1 124.0	14 12.3	7.9 B.15	11.4 8.6
WIND.HIL	7-May-85	705	4.2	0.5 3	1.4 1.1	26.2 24.5	50.7 46.45	.59 .5B	2.63 2.45	9.0 9.4	3304.5 3714.2	438.8 489.7	86 94	21.9 25.0	70 73
RAG.PT.	9-May-85	640	17	0.5 15.5	0.5 8.0	2.4 5.5	27.75 35.4	.12 .12	1.22 0.43	7.9 10.3	2207.2 1193.7	276.5 205.4	23.3 18.7	16.4 16.7	12 11.4
MD.PT.	9-May-85	1025	10.8	0.5 B.5	4. 2 7.0	50.3 42.9	80.3 68.55	.73 .73	2.32 2.93	29.5 29.1	1964.0 2991.0	457.5 485.8	56 130	28.2 22.B	28 85.5
PT.NO PT	, B-May-B5	1630	14.5	0.5 13.5	2.7 6.3	13.6 7.8	41.85 3 4 .7	.07 .09	1.52 0.79	2.2 8.1	583.3 612.6	153.1 220.9	10 10.7	4.85 9.9	10.6 8.4
R-64	6-May-85	1720	16.8	0.5 15	2.0 5.2	21.5 9.7	45.6 34.3	.11 .10	0.45 0.14	1.3 4.7	984.2 1096.B	158.3 226.7	11 17.5	9.75 16.1	7.4 17.4
R-78	7-May-85	1655	17	0.5 16	.7 4.7	20.3 14.2	42.85 41.3	.20 .15	0.16 0.69	1.3 3.1	2666.7 4324.3	361.8 643.4	20.7 44	35.4 68.25	12.8 31.6
STIL. PD	8-May-85	705	9.5	0.5 9	4.0 4.8	57.7 57.3	79.45 79.35	.17	1.81 1.6	7.1 7.B	1638.6 2640.0	221.9 29B.5	44 54	17.7 18.85	27.8 45.8

NO. 2-3

-

R - 1

BIOMONITIORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) H2ONUTS (Surface and bottom water dissolved and particulate nutrient concentrations at SONE stations)

			TOTAL			DISSOLV	ED NUT	RIENTS				PARTICULI	ATES		
STATION	DATE	TIME	DEPTH (m)	DEPTH (m)	NH4 (um N	ND3+ND2) (um N)	2 TDN (um N)	DIP (um P)	TDP (um P)	SI(0H)4)(uM Si)	PC (ug/1)	PN (ug/1)	PP (ug/1	CHLORD) (ug/1)	SESTON (mg/l)
ST.LEO	25-June-85	1100	7.5	0.5 7.5	5.0 8.5	1.16 1.82	27.7 32.3	.12 .13	0.66	67.9 59.2	1508 1125	281 198	36.5 33.7	12 6.4	27.4 29.2
BU.VISTA	25-June-85	730	4.6	0.5 3	0.6 0.8	. 69	26.25 28.85	1.36	2.08 2.03	91 71	3344 2214	672 344	7 4. 7 67.5	33.6 13.6	45.6 34.4
HORN PT.	26-June-85	700	8.2	0.5 7	1.8 2.9	1.01 1.55	27.35 34.25	.20 .27	1.04 0.89	55.3 54.3	11 44 2633	198 513	27.5 55.3	8 6.8	30.2 31.8
RAG.PT.	24-June-85	920	16.5	0.5 15	3.1 18.8	.19 .36	38.4 42.65	.20 1.56	0.74 2.34	41.9 42.4	1841 1007	378 155	48.5 18.1	19 4.4	19 44.8\24.8
MD.PT	24-June-85	1320	9.6	0.5 8	1.4 4.6	38.1 30.9	63.35 57.45	1.10	1.96 1.84	33.3 40.9	1239 1244	212 202	40.2 48.1	11.6 9	25.8 23.8
PT.NO.PT	24-June-85	1830	14.4	0.5 13	0.5 12.6	. 37 . 47	24.1 36.5	.14 .32	0.96 .5	11.8 39.4	9 98 1066	142 216	17.4 24	4 3.2	13.2 12.6
R-64	25-June-85	1540	17.5	0.5 16	0.3 22.1	.68 .85	21.8 46.2	.27 .40	0.88 0.51	28.6 46.2	2080 513	337 92	30.3 20.7	15.8 2	24.8 7.9
R-78	27-June-85	1045	16.8	0.5 15	3.8 22.9	8.0 .90	33.75 52.55	.15 .43	0.26 0.74	46.5 47.8	1690 692	31B 128	43.1 27.2	18.3 4	20.6 24.6\10.8
STIL.PD	26-June-85	1710	10.4	0.5 9	3.6 4.5	43.6 38.6	67 63.5	. 44 . 49	1.09	31.6 38.5	1194 1941	9 6.4 201	27.3 44.9	6.6 4.B	25 32.8

LONG-TERM BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT (SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H2O and various particulates) Add +244 mV to all Eh data to correct values to hydrogen electrode NOTE:Vertical profiles of particulates collected only during October cruise. NOTE: No surfical particulate samples taken during this cruise.

STATION	DATE	TIME	TDTAL DEPTH (H)	CORE Depth (CM)	Eh	XH20 (%)	PC	SEDIMENT Pn	ANALYSIS, PP	,X SI	CHLORO (sg/s2
ST.LEO	27-AU6-84	1035	6.7	0	-272						
				1	-286						
				2	-276						
				3	-233						
				4	-246						
				5	-248						
				6	-248						
				7	-253						
				8	-255						
				9	-264						
BU.VISTA	27-AUG-84	1410	3.6	0	-75						
				1	-263						
				2	-270						
				3	-272						
				4	-281						
				5	-29B						
				6	-297						
				7	-300						
				8	-303						
				9	-303						
HORN.PT	29-AUG-84	1120	7.2	0	-249						
				1	-256						
				2	-278						
				3	-290						
				4	-291						
				2	-282						
				6 7	-273						
				/ D	-3//						
				đ D	-343 "787						
				7	-34/ -719						
				11	-302						
				11	201						

LONG-TERM BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT (SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H2O and various particulates) Add +244 mV to all Eh data to correct values to hydrogen electrode NOTE:Vertical profiles of particulates collected only during October cruise. NOTE: No surfical particulate samples taken during this cruise.

STATION	DATE	TIME	TOTAL Depth (m)	CORE Depth (CM)	Eh	2H2O (2)	PC	SEDIMENT PN	ANALYSIS,% PP	SI	CHLORO (mg/m2
WIND.HIL	29-AUG-84	1343	3.6	0	-63						
				1							
				2	-257						
				3	-277						
				4	-284						
				5	-292						
				6	-290						
				7	-291						
				8	-304						
				9	-297						
				10	-324						
				11	-340						
				12	-359						
RAG.PT	28-AUG-84	1248	13.2	0	-386						
				1	-395						
				2	-402						
				3	-413						
				4	-412						
				2	-400						
				6 7	-4/2						
				/	-403						
				0	- 405						
				10	-423						
ИЛ БТ	70_110_04	1715	0 0	٥	-45						
111/11	10.000.04	1713	1.0	i	-177						
				· 2	-365						
				3	-438						
				4	-452						
				, 5	-502						
				6	-483						
				7	-472						
				8	-503						
				9	-462						

- 14-1

LONG-TERM BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT (SONE STUDY) SEDFROF (Vertical sediment profiles of Eh,ZH2O and various particulates) Add +244 mV to all Eh data to correct values to hydrogen electrode NOTE:Vertical profiles of particulates collected only during October cruise.

STATION	DATE	TIME	TOTAL Depth (m)	CORE Depth (CN)	Eh	XH20 (X)	PC	SEDIMENT Pn	ANALYSIS, PP	X SI	CHLORO (mg/m2
PT.NO.PT	 28-AUG-84	 940	13	 0	-278	**					
				1	-332						
				2	-318						
				3	-332						
				. 4	-342						
				5	-362						
				6							
				7	-364						
				8	-353						
				9							
R-64	29-AUG-84	845	16	0	-355						
				1	-400						
				2	-410						
				3	-423						
				4	-424						
				5	-426						
				6	-433						
				7	-430						
				8	-438						
				4	-430						
				10	-435						
				11	-442						
TOM.PT	30-AUG-84	1100	15.2	0	-238						
				1	-283						
				2	-284						
				3	-302						
				4	-212						
				כ י	-313						
				0 7	-324						
				, 0	-401						
				6 D	-333						
				7	-500						
				11	-577						
				17	-440						
				13	-310						
				13	_775						

LONG-TERM BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT (SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H2O and various particulates) Add +244 mV to all Eh data to correct values to hydrogen electrode NOTE:Vertical profiles of particulates collected only during October cruise. NOTE: No surfical particulate samples taken during this cruise.

STATION	DATE	TIME	TOTAL Depth (M)	CORE Depth (CH)	Eh	%H20 (%)	PC	SEDIMENT Pn	ANALYSIS,Z PP	SI	CHLORD (mg/m2)
STIL.PD	30-AUG-84	800	9.5	0 1 2 3 4 5 6 7 8 9 10 11 12	-38 -230 -257 -263 -285 -291 -293 -304 -284 -307 -320 -354 -354 -357						
				13 14	-369 -404						

No. 3-5

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ALL EH DATA TO ADD +244 mV to correct to hydrogen electrode. NOTE: No SI or CHLORO data collected during this cruise.

					!	SEDIMENT P	RDFILES				
STATION	DATE	TIME	TOTAL Depth (n)	CORE Depth (CN)	Eh	2H20 (2)	PC	SEDIMENT PN	ANALYSIS,Z PP	SI	CHLOR((mg/m)
ST.LEO	17-0CT-84	1419	7	0	140						
				1	100	81.4	2.42	0.28	0.061		
				2	-120	72.5	2.29	0.27	0.057		
				3	-140	70.5	2.5	0.31	0.063		
				4	-155	70.6	2.74	0.34	0.057		
				5		68.8	2.86	0.32	0.075		
				6	-155	67.2	2.88	0.31	0.059		
				7		65.5	2.53	0.3	0.056		
				8	-160						
				10	-150						
BU.VISTA	17-0CT-84	1222	. 4	0	160						
				0.5	90						
				1		82.5	2.19	0.27	0.134		
				1.5	20						
				2		72.5	2.34	0.29	0.145		
				2.5	-140						
				3		68.7	2.38	0.28	0.147		
				3.5	-175						
				4		65.8	2.24	0.25	0.124		
				4.5	-170						
				5		62.5	2.15	0.24	0.111		
				5.5							
				6		60.9	2.2	0.25	0.115		
				6.5	-155						
				7		59.4	2.2	0.24	0.109		
				7.5	-155						
				8		58.8	2.34	0.22	0.102		
HORN.PT	15-0CT-85	1628	8	0	135						
				1		B3.2	4.03	0.25	0.059		
				1.2	95						
				2		71.6	2.19	0.26	0.058		
				2.2	-60						
				3		70.B	2.58	0.3	0.071		
				3.2	-150						
				4		68.4	2.31	0.26	0.069		
				4.2	-90						
				5		67	2.32	0.28	0.059		
				5.2	-80						
				6		64.7	2.01	0.26	0.051		
				6.2	-70						
				7		63.1	1.89	0.23	0.05		
				7.2	-90						
				8		60.9	1.98	0.23	0.048		
				8.2	-110						
						ED /		A 54	A A45		
				9		37.6	1.86	U. /4	U.U43		
				9.2		37.6	1.86	0.24	V. V43		
				9 9.2 10		37.6 58.4	1.86	0.24	0,043		

-

~

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H2O and various particulates) ALL EH DATA TO ADD +244 mV to correct to hydrogen electrode. NOTE: No SI or CHLORO data collected during this cruise.

						SEDIMENT P	ROFILES				
			TOTAL	CORE			<u>(</u>	BEDIMENT	ANALYSIS,Z		
STATION	DATE	TIME	DEPTH (N)	DEPTH (CM)	Eh	2H2O (2)	PC	PN	PP	SI	CHLORO (mg/m2)
WIND.HIL	15-DCT-84	1100	4.6	0	130						
				i	-120	81.4	4.52	0.36	0.102		
				2	-120	75.7	7.05	0.52	0.126		
				3	-70	74.6	7.0B	0.52	0.112		
				4	-110	74	7.08	0.49	0.117		
				5		72.5	6.74	0.5	0.113		
				6	-70	69.7	5.51	0.4	0.102		
				7		71.9	6.16	0.47	0.104		
				8	-90	74.3	7.98	0.54	0.12		
				9		72.2	6.68	0.49	0.123		
				10	-180	70.5	6.8	0.47	0.105		
				11							
				12	-190						
RAG.PT	18-0CT-84	0950	15.5	0	120						
				i	20	87.3	3.47	0.48	0.084		
				2	-230	84	3.44	0.46	0.069		
				3	-305	80.7	3.53	0.45	0.066		
				- 4	-305	80	3.56	0.47	0.071		
				5		79.8	3.51	0.46	0.07		
				6	-310	77.1	3.08	0.4	0.061		
				7		77.8	2.93	0.35	0.06		
				8	-340	75.6	2.72	0.34	0.058		
				9		72.9	2.91	0.37	0.058		
				10	-330	72.6	2.94	0.36	0.056		
ND.PT	18-0ct-84	1340	9.5	0	130						
				1	100	86.4	2.79	0.3	0.117		
				2	50	79.4	2.86	0.31	0.108		
				3	-150	74.9	2.94	0.32	0.121		
				4	-180	74.8	3.36	0.38	0.125		
				5	-210	69.2	2.82	0.31	0.108		
				6	-235	61.4	2.44	0.25	0.094		
				7	-220	60.3	2.35	0.26	0.089		
				8		59.3	2.48	0.25	0.095		
				9		59.8	2.48	0.26	0.093		
				10							

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H2O and various particulates) ALL EH DATA TO ADD +244 mV to correct to hydrogen electrode. NOTE: No SI or CHLORO data collected during this cruise.

					ę	GEDIMENT P	ROFILES				
*			TOTAL	CORE				EDIMENT A	NALYSIS, X		
STATION	DATE	TIME	DEPTH (M)	DEPTH (CM)	Eh	XH20 (X)	PC	PN	PP	SI	CHLORO (mg/m2)
PT.NO.PT	17-0CT-84	1810	13.4	0	160						
				1	100	70.8	1.14	0.16	0.031		
				2	-110	57.3	1.56	0.16	0.035		
				3	-220	45.8	0.97	0.12	0.023		
				4	-250	36.4	0.67	0.08	0.021		
				5	-2B0	30.9	0.43	0.05	0.022		
				6		31.8	0.75	0.07	0.018		
				7	-310	31.7	0.56	0.05	0.022		
				8		37.4	0.68	0.07	0.025		
				9	-300	42.8	1.09	0.12	0.031		
				10		44.5	1.01	0.11	0.032		
				11	-280						
R-64	16-0CT-84	1810	19	0	160						
				1	100	89.5	2.3	0.36	0.055		
				2	90	80.9	3.83	0.3	0.054		
				3	-150	76.5	2.87	0.35	0.049		
				4	-220	74.8	2.9	0.37	0.052		
				5	-210	73.9	2.56	0.31	0.049		
				6	-250	74.9	2.62	0.31	0.049		
				7		75.5	2.62	0.31	0.051		
				8	-250	74.1	2.68	0.32	0.048		
				9	-270	72.3	2.63	0.32	0.051		
				10		74	2.69	0.31	0.049		
				11	-300						
R-78	16-0CT-84	1218	16.4	0	145						
				1	90	89.6	9.74	0.46	0.091		
				2	-190	65.8	17.98	0.48	0.069		
				3	-230	65.9	2.56	0.19	0.045		
				4	-210	65.3	2.53	0.19	0.047		
				5	-220	64.3	2.53	0.2	0.05		
				6		63.1	2.06	0.17	0.044		
				7	-230	61	2.08	0.17	0.043		
				8		62.5	1.66	0.16	0.041		
				9	-250						

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ALL EH DATA TO ADD +244 mV to correct to hydrogen electrode. NOTE: No SI or CHLORO data collected during this cruise.

					DEVINENT F	NUFILED				
		TOTAL	CORE				SEDIMENT 4	NALYSIS,Z		
DATE	TIME	DEPTH (M)	DEPTH (CM)	Eh	2H2O (2)	PC	PN	PP	SI	CHLORO (mg/m2)
16-0CT-84	1000	10	0	40			****			
			1	30	82.9	4.69	0.24	0.066		
			2	-95	69.4	4.83	0.25	0.07		
			3	-90	67.8	4.81	0.26	0.077		
			4	-105	67.7	5.06	0.27	0.081		
			5	-95	59	3.72	0.21	0.051		
			6	-145	56.4	2.78	0.19	0.045		
			7	-105	56.3	2.84	0.21	0.051		
			8		54.8	2.56	0.21	0.036		
			9		52.2	2.32	0.2	0.035		
			10		53	2.44	0.21	0.034		
	DATE 16-0CT-84	DATE TIME 16-0CT-84 1000	TOTAL DATE TIME DEPTH (M) 16-OCT-84 1000 10	DATE TIME TOTAL CORE DATE TIME DEPTH DEPTH (M) (CM) 16-OCT-84 1000 10 0 1 2 3 4 5 6 7 8 9 10	TOTAL CORE DATE TIME DEPTH DEPTH Eh (M) (CM) 1 30 2 -95 3 -90 4 -105 5 -95 6 -145 7 -105 5 97 6 -145 7 -105 8 9 10 <td>TOTAL CORE DATE TIME DEPTH DEPTH Eh XH20 (M) (CH) (X) (X) 16-0CT-84 1000 10 0 40 1 30 B2.9 2 -95 69.4 3 -90 67.8 4 -105 67.7 5 -95 59 6 -145 56.4 7 -105 56.3 8 54.8 9 52.2 10 53</td> <td>TOTAL CORE SEDIMENT PROFILES DATE TIME DEPTH DEPTH Eh XH20 PC (M) (CM) (Z) (Z) (Z) (Z) (Z) 16-0CT-84 1000 10 0 40 4 4.69 2 -95 69.4 4.83 3 -90 67.8 4.81 3 -90 67.8 4.81 4 -105 67.7 5.06 5 -95 59 3.72 6 -145 56.4 2.78 7 -105 56.3 2.84 8 54.8 2.56 9 52.2 2.32 10 53 2.44</td> <td>TOTAL CORE SEDIMENT PROPILES DATE TIME DEPTH DEPTH Eh XH20 PC PN 16-0CT-84 1000 10 0 40 1 30 82.9 4.69 0.24 2 -95 69.4 4.83 0.25 3 -90 67.8 4.81 0.26 4 -105 67.7 5.06 0.27 5 -95 59 3.72 0.21 6 -145 56.4 2.78 0.19 7 -105 56.3 2.84 0.21 9 52.2 2.32 0.2 10 53 2.44 0.21</td> <td>TOTAL CORE SEDIMENT ANALYSIS,Z DATE TIME DEPTH DEPTH Eh XH20 PC PN PP (M) (CM) (Z) (Z) 16-0CT-84 1000 10 0 40 16-0CT-84 1000 10 0 40 1 30 82.9 4.69 0.24 0.066 2 -95 69.4 4.83 0.25 0.07 3 -90 67.8 4.81 0.26 0.077 4 -105 67.7 5.06 0.27 0.081 5 -95 59 3.72 0.21 0.051 6 -145 56.4 2.78 0.19 0.045 7 -105 56.3 2.84 0.21 0.051 8 54.8 2.56 0.21 0.036 9 52.2 2.32 0.2 0.035 10 53 2.44 0.21 0.034 <td>TOTAL CORE SEDIMENT ANALYSIS, X DATE TIME DEPTH DEPTH Eh XH20 PC PN PP SI 16-0CT-84 1000 10 0 40 1 30 82.9 4.69 0.24 0.066 2 -95 69.4 4.83 0.25 0.07 3 -90 67.8 4.81 0.26 0.077 4 -105 67.7 5.06 0.27 0.081 5 -95 59 3.72 0.21 0.051 6 -145 56.4 2.78 0.19 0.045 7 -105 56.3 2.84 0.21 0.051 8 54.8 2.56 0.21 0.036 9 52.2 2.32 0.2 0.035 10 53 2.44 0.21 0.034</td></td>	TOTAL CORE DATE TIME DEPTH DEPTH Eh XH20 (M) (CH) (X) (X) 16-0CT-84 1000 10 0 40 1 30 B2.9 2 -95 69.4 3 -90 67.8 4 -105 67.7 5 -95 59 6 -145 56.4 7 -105 56.3 8 54.8 9 52.2 10 53	TOTAL CORE SEDIMENT PROFILES DATE TIME DEPTH DEPTH Eh XH20 PC (M) (CM) (Z) (Z) (Z) (Z) (Z) 16-0CT-84 1000 10 0 40 4 4.69 2 -95 69.4 4.83 3 -90 67.8 4.81 3 -90 67.8 4.81 4 -105 67.7 5.06 5 -95 59 3.72 6 -145 56.4 2.78 7 -105 56.3 2.84 8 54.8 2.56 9 52.2 2.32 10 53 2.44	TOTAL CORE SEDIMENT PROPILES DATE TIME DEPTH DEPTH Eh XH20 PC PN 16-0CT-84 1000 10 0 40 1 30 82.9 4.69 0.24 2 -95 69.4 4.83 0.25 3 -90 67.8 4.81 0.26 4 -105 67.7 5.06 0.27 5 -95 59 3.72 0.21 6 -145 56.4 2.78 0.19 7 -105 56.3 2.84 0.21 9 52.2 2.32 0.2 10 53 2.44 0.21	TOTAL CORE SEDIMENT ANALYSIS,Z DATE TIME DEPTH DEPTH Eh XH20 PC PN PP (M) (CM) (Z) (Z) 16-0CT-84 1000 10 0 40 16-0CT-84 1000 10 0 40 1 30 82.9 4.69 0.24 0.066 2 -95 69.4 4.83 0.25 0.07 3 -90 67.8 4.81 0.26 0.077 4 -105 67.7 5.06 0.27 0.081 5 -95 59 3.72 0.21 0.051 6 -145 56.4 2.78 0.19 0.045 7 -105 56.3 2.84 0.21 0.051 8 54.8 2.56 0.21 0.036 9 52.2 2.32 0.2 0.035 10 53 2.44 0.21 0.034 <td>TOTAL CORE SEDIMENT ANALYSIS, X DATE TIME DEPTH DEPTH Eh XH20 PC PN PP SI 16-0CT-84 1000 10 0 40 1 30 82.9 4.69 0.24 0.066 2 -95 69.4 4.83 0.25 0.07 3 -90 67.8 4.81 0.26 0.077 4 -105 67.7 5.06 0.27 0.081 5 -95 59 3.72 0.21 0.051 6 -145 56.4 2.78 0.19 0.045 7 -105 56.3 2.84 0.21 0.051 8 54.8 2.56 0.21 0.036 9 52.2 2.32 0.2 0.035 10 53 2.44 0.21 0.034</td>	TOTAL CORE SEDIMENT ANALYSIS, X DATE TIME DEPTH DEPTH Eh XH20 PC PN PP SI 16-0CT-84 1000 10 0 40 1 30 82.9 4.69 0.24 0.066 2 -95 69.4 4.83 0.25 0.07 3 -90 67.8 4.81 0.26 0.077 4 -105 67.7 5.06 0.27 0.081 5 -95 59 3.72 0.21 0.051 6 -145 56.4 2.78 0.19 0.045 7 -105 56.3 2.84 0.21 0.051 8 54.8 2.56 0.21 0.036 9 52.2 2.32 0.2 0.035 10 53 2.44 0.21 0.034

SEDIMENT PROFILES

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ALL EH DATA TO ADD +244 mV to correct to hydrogen electrode.

						SEDIMENT	PROFILES				
			TOTAL	CORE			S	EDIMENT #	NALYSIS.Z		
STATION	DATE	TIME	DEPTH (M)	DEPTH (CM)	Eh	2H2O (2)	PC	PN	PP	SI	CHLORO (mg/m2)
ST.LED	6-MAY-85	830	6.6	H20	173						
				SED/H20	9 7						
				1	-77		2.67	0.34	0.089		30.9
				2	-150						
				3	-150						
				4	-170						
				5	-200						
				6	-206						
				7	-185						
				8							
BU.VISTA	6-MAY-85	12PM	4	H20	197						
				SED/H20	-5						
				lcm	+B		2.78	0.32	0.166		31.8
				2	+53						
				3	+20						
				4	-135						
				5	-111						
				6	-146						
HORN.PT	7-MAY-85		9.5-10M	H20	+185						
				icm	-155		2.31	0.33	0.079		31
				2c=	-200						
				3cm	-200						
				4ca	-225						
				5cm	-210						
				6C#	-236						
				7cm	-140						
				8ce	-210						
WIND.HIL	7-MAY-85	0710	4.2	H20	+200						
				ica	+19		7.45	0.55	0.118		38.2
				2ca	+135						
				3ce	+124						
				4cm	+200						
				5ce	+100						
				6C e	+120						

SEDIMENT PROFILES

BIONONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ALL EH DATA TO ADD +244 mV to correct to hydrogen electrode.

						SEDIMENT	PROFILES				
STATION	DATE	TIME	TOTAL Depth (N)	CORE Depth (CM)	Eh	XH20 (X)	PC	SEDIMENT A PN	NALYSIS,Z PP	SI	CHLORO (mg/m2)
RAG.PT	9-MAY-85	0700?	17	H20 1 2 3 4 5	+195 -90 -100 -93 -110 -180		4.97	0.66	0.09		51.8
MD.PT	9-MAY-85	1030?	10.8	H20 1 2 3 4 5 6 7 8	+195 +150 +125 -90 -165 -180 -200 -210 -190		2.86	0.33	0.12		26
PT.NO.PT	5-MAY-85	1800	14.5	SUR/H20 H20/SED 1cm 2 3 4 5 6 7 8	+195 -260 -230 -200 -140 -100 -100 -100 -70 -60		4.24	0.56	0.111		38.2

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY)

SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ALL EH DATA TO ADD +244 mV to correct to hydrogen electrode.

						SEDIMENT	PROFILES				
			TOTAL	CORE			 S	EDIMENT A	NALYSIS,Z		
STATION	DATE	TIME	DEPTH (m)	DEPTH (CM)	Eh	2H20 (2)	PC	PN	PP	51	CHLORO (mg/m2)
R-64	6-MAY-85	1830	16.8	H20	+200	*****					
				icm	-201		3.45	0.48	0.08		49.5
				2	-180						
				3	-155						
				4	-210						
				5	-250						
				6	-270						
				7	-300						
R-78	5-MAY-85	1655	17 m	H20	+200						
				₹2cm	-460						
				3c e	-360						
				4	-330						
				5	-300						
				icm	-470		10.39	0.52	0.144		43.6
				0cm	-110						
STIL.Pd	5-MAY-85	0710	9.5e	H20	+180						
				0cm	+120						
				1	-140		4.92	0.22	0 .0 77		11.4
				2	-100						
				3	-195						
				4	-200						
				5	-1B5						
				6	-200						
				7	-160						
				8	-180						

BIOMGNITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,XH20 and various particulates) ALL EH DATA TO ADD +244 mV to correct to hydrogen electrode.

						SEDIMENT	PROFILES				
STATION	DATE	TIME	TOTAL Depth (m)	CORE Depth (CN)	Eh	۲H2O (۲)	PC	SEDIMENT PN	ANALYSIS,Z PP	SI	CHLORO (mg/m2)
ST.LEO	25-June-85	1100		H20	170						
				SED/H20	175						
				1	147		2.72	0.4	0.084		24.17
				2	70						
				3	-100						
				4	-80						
				5	-130						
				6	-120						
				7	-165						
				8	-140						
BU.VISTA	25 -J une-85	730		H20	160						
				SED/H20	150						
				icm	102		2.49	0.31	0.152		15.81
				2	-160						
				3	-225						
				4	-227						
				5	-245						
				6	-211						
				7	-225						
				8	-135						
HORN.PT	26-June-85	700		820	90						
				SED/H20	170						
				1	200		2.76	0.3	0.064		29.67
				2	167						
				3	-110						
				4	-80						
				5	-120						
				6	-202						
				7	-227						
				B	-230						

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,XH20 and various particulates) ALL EH DATA TO ADD +244 mV to correct to hydrogen electrode.

STATION	DATE	TIME	TOTAL Depth (m)	CORE Depth (CM)	Eh	2H2O (2)	S PC	EDIMENT A PN	NALYSIS,% PP	SI	CHLORO (ng/n2)
RAG PT	24-June-85	1030		H20	-790		******				
110111	24 00112 05	1030		SED/H2D	-75						
				1	-320		3.37	0.43	0.063		27.94
				2	-340			VIIV			
				3	-360						
				4	-332						
				5	-362						
				6	-332						
MD.PT.	24-June-85	1310		H20	140						
				SED/H2D	162						
				1	130		2.71	0.32	0.126		20.5
				2	115						
				3	105						
				4	102						
				5	100						
				6	103						
				7	121						
				8	130						
PT.NO.PT	24-JUNE-85	1910		H20	205						
				SED/H20	-160						
				1	-203		3.27	0.45	0.087		22.33
				2	-194						
				3	-235						
				4	-250						
				5	-250						
				6	-245						
				7	-328						
				8	-203						

SEDIMENT PROFILES

						SEDIMENT	PROFILES				
			TOTAL	CORE				EDIMENT (NALYSIS.Z		
STATION	DATE	TIME	DEPTH (M)	DEPTH (CM)	Eh	XH20 (X)	PC	PN	PP	SI	CHLORO (mg/m2)
R-64	25-JUNE-85	1600		H20	160				5 45 46		
				SED/H20	-210						
				1	-235		3.6	0.46	0.078		32.12
				2	-240						
				3	-295						
				4	-332						
				5	-345						
				6	-362						
				7	-396						
				B	-405						
R-78	27-JUNE-85	1200		H20	110						
				SED/H20	-156						
				i	-245		3.83	0.4B	0.087		26
				2	-166						
				3	-245						
				4	-350						
				5	-232						
				6	-393						
				7	-365						
				8	-365						
STIL.PD	26-JUNE-85	1600		H20	100						
				SED/H20	120						
				1	100		3.68	0.24	0.074		19.89
				2	28						
				3	-57						
				4	-43						
				5	105						
				6	-79						

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,2H20 and various particulates). ALL EH DATA TO ADD +244 mV to correct to hydrogen electrode.

Data Table No. 4-1

LONG-TERM BIOMONITORING PROGRAM SEDIMENT-WATER EXCHANGE COMPONENT

SEDIMENT-WATER FLUXES

SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

(HL) (CH) HR HIN (min) (HG/1) (uH-H) (uH-H)	3.74 (uH-1 3.86 (4.21 1 3.92 1 4.27 1 4.18 1 3.5	- SI) 107 108 113 118 121 125
ST.LED 27-AUG-84 BLACK 5.1 0 15 30 36.2 2.01 5.1 30 16 0 30 37.5 1.97 5.1 60 16 30 30 37.5 1.97 5.1 60 16 30 30 37.9 2.33 5.1 96 17 6 36 44.2 2.4 5.1 129 17 39 33 43.8 3.48 5.1 162 18 12 33 44.7 2.3 5.1 416 22 26 254 53.1 2.58 ST.LED 27-AUG-84 BLUE 10 0 15 25 30 20.1 0.95 10 30 15 55 30 20.1 0.95 10 60 16 25 30 22 1.18 10 100 17 5 40 22.1 0.93 10 167 18 12 33 24.1	3.74 3.86 4.21 1 3.92 4.27 1 4.18 3.5	107 108 113 118 121 125
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.86 4.21 3.92 4.27 4.18 3.5	108 113 118 121 125
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.21 3.92 4.27 4.18 3.5	113 118 121 125
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.92 4.27 4.18 3.5	118 121 125
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.27 : 4.18 : 3.5	121 125
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.18	125
5.1 416 22 26 254 53.1 2.58 ST.LED 27-AUG-84 BLUE 10 0 15 25 19.5 1.31 10 30 15 55 30 20.1 0.95 10 60 16 25 30 22 1.18 10 100 17 5 40 22.1 0.93 10 134 17 39 34 23.2 1.32 10 167 18 12 33 24.1 1.64	3.5	<u>6</u> 6
ST.LED 27-AUG-94 BLUE 10 0 15 25 19.5 1.31 10 30 15 55 30 20.1 0.95 10 60 16 25 30 22 1.18 10 100 17 5 40 22.1 0.93 10 134 17 39 34 23.2 1.32 10 167 18 12 33 24.1 1.64		66
10 30 15 55 30 20.1 0.95 10 60 16 25 30 22 1.18 10 100 17 5 40 22.1 0.93 10 134 17 39 34 23.2 1.32 10 167 18 12 33 24.1 1.64	1.81	6V
10 60 16 25 30 22 1.18 10 100 17 5 40 22.1 0.93 10 134 17 39 34 23.2 1.32 10 167 18 12 33 24.1 1.64	1.81	82
10 100 17 5 40 22.1 0.93 10 134 17 39 34 23.2 1.32 10 167 18 12 33 24.1 1.64	1.93	86
10 134 17 39 34 23.2 1.32 10 167 18 12 33 24.1 1.64	1.94	86
10 167 18 12 33 24.1 1.64	1.98	91
	2.32	93
10 416 22 21 249 29.4 1.6	2.02	112
ST.LEO 27-AUG-84 GREEN 7.7 0 15 25 0 25.5 1.99	2.73	98
7.7 30 15 55 30 25 1.7	3.06	101
7.7 60 16 25 30 25.9 2.87	3.36	104
7.7 100 17 5 40 26.3 1.52	3.26	111
7.7 134 17 39 34 2B.1 1.57	3.29	111
7.7 167 18 12 33 28.4 1.75	3.25	115
7.7 415 22 20 248 33.2 2.09	2.67	127

St. Leonard Station: First Run

LONG-TERM BIOMONITORING PROGRAM SEDIMENT-WATER EXCHANGE COMPONENT

CORE CORE CORE H20 TIME TIME OF NO. VOL HEIGHT (SUM) SAMPLE DELTA T DO NH4 NO3+NO2 DIP SI(OH)4 DATE NO. VOL HEIGHT (SUM) STATION (ML) (CM) HR MIN (min) (MG/1) (uH-N) (uH-N) (uH-P) (uH-SI) _____
 1080
 7.714285
 0
 10
 30
 4.66

 1080
 7.714285
 30
 11
 0
 30
 4.5

 1080
 7.714285
 80
 11
 50
 50
 4.3

 1080
 7.714285
 110
 12
 20
 30
 4.1

 1080
 7.714285
 140
 12
 50
 30
 3.94

 1080
 7.714285
 185
 13
 35
 45
 3.62
 ST.LED 31-AUG-84 1
 ST.LE0
 31-AUG-B4
 2
 880
 6.285714
 0
 10
 30
 4.78

 880
 6.285714
 30
 11
 0
 30
 4.73

 880
 6.285714
 80
 11
 50
 50
 4.59
 880 6.285714 110 12 20 30 4.48
 BS0
 6.285714
 140
 12
 50
 30
 4.4

 880
 6.295714
 185
 13
 35
 45
 4.4

 880
 6.285714
 255
 14
 45
 70
 3.97

 895
 6.392857
 0
 10
 30
 4.33

 895
 6.352857
 30
 11
 0
 30
 3.93
 ST.LEO 31-AUG-84 3 50 11 50 3.23 895 6.392857 80
 895
 6.392857
 110
 12
 20
 30
 2.82

 895
 6.392857
 140
 12
 50
 30
 2.26

 895
 6.392857
 185
 13
 35
 45
 1.52

St. Leonard Station: Second Run

SEDIMENT-WATER FLUXES

LONG-TERM BIOMONITORING PROGRAM SEDIMENT-WATER EXCHANGE COMPONENT

SEDIMENT-WATER FLUXES

STATION	DATE	CORE No.	CDRE Vol	CORE H20 HEIGHT	TIME (SUM)	TIME SAMPL	DF E	DELTA T	DO	NH4	N03+N02	DIP	SI (OH) 4
			(ML)	(CM)		HR	MIN	(min)	(MG/1)	(uM-N)	(uM-N)	(uM-P)	(uM-SI)
BU.VISTA	27-AUG-84	RED		6.7	0	15	38			7.8	1.95	3.66	101
				6.7	37	16	15	37		9	2.87	3.92	108
				6.7	56	16	44	29		11.2	2.33	4.04	111
				6.7	102	17	20	36		12.4	4.5	4.26	110
				6.7	135	17	53	33		14.3	2.89	4.25	116
				6.7.	165	18	23	30		15.5	2.47	4.36	115
				6.7	416	22	34	251		24.1	3.4	4.86	136
BU.VISTA	27-AUG-84	WHITE		7.3	0	15	38			3.8	1.11	3.74	9 5
				7.3	37	16	15	37		5	1.07	3.88	99
				7.3	67	16	45	30		6	2.37	3.93	101
				7.3	103	17	21	36		7.8	1.52	4.03	105
				7.3	137	17	55	34		9.4	1.25	4.23	108
				7.3	167	18	25	30		10.2	1.54	4.35	107
				7.3	414	22	32	247		19.6	1.11	4.62	124
BU.VISTA	27-AUS-84	SILVER		7.5	0	15	38			9.1	1.55	3.58	99
				7.5	37	15	15	37		10.5	1.82	3.76	103
				7.5	6B	16	46	31		11.2	2.82	3.96	106
				7.5	105	17	23	37		11.9	6.72	4.11	108
				7.5	139	17	57	34		12.1	2.88	4.07	112
				7.5	169	18	27	30		12.9	2.4	4.11	114
				7.5	410	22	28	241		17.8	3.53	4.49	130

Buena Vista Station: First Run

. ..

LONG-TERN BIDHONITORING PROGRAM SEDIMENT-WATER EXCHANGE COMPONENT

SEDIKENT-WATER FLUXES CORE CORE H2O TIME TIME OF NO. VOL HEIGHT (SUM) SAMPLE DELTA T DO NH4 STATION DATE NO. NO3+NO2 DIP SI (OH) 4 (HL) (CM) HR MIN (min) (MG/1) (uN-N) (uM-P) (uN-SI) ------
 1560
 11.14285
 0
 9
 26
 5.77

 1560
 11.14285
 24
 9
 50
 24
 5.4

 1560
 11.14285
 59
 10
 25
 35
 4.99

 1560
 11.14285
 59
 10
 25
 35
 4.99

 1560
 11.14285
 99
 11
 5
 40
 4.45

 1560
 11.14285
 139
 11
 45
 40
 3.77

 1560
 11.14285
 169
 12
 15
 30
 3.34

 1560
 11.14285
 202
 12
 48
 33
 2.83

 1560
 11.14285
 246
 13
 32
 44
 2.11
 BU.VISTA 31-AUG-84 RED BU.VISTA 31-AUG-84 BLUE

 11.5
 0
 9
 27

 11.5
 23
 9
 50

 11.5
 58
 10
 25

 11.5
 98
 11
 5

 11.5
 138
 11
 45

 11.5
 168
 12
 15

 11.5
 201
 12
 48

 BU.VISTA 31-AUG-84 GREEN 1610 5.44 1610 23 5.28 1610 35 5.05 4.7 1610 40 40 4.43 1610 1610 30 4.11 1610 33 3.79 13 32 44 245 1610 11.5 3.26

Buena Vista Station: Second Run

LONG-TERM BIOMONITORING PROGRAM SEDIMENT-WATER EXCHANGE COMPONENT

SEDIMENT-WATER FLUXES

STATION	DATE	NC.	VOL	HEIGHT	(SUM)	SAMPL	E .	DELTA T	D O	NH4	N03+N02	DIP	SI (OH) 4
			(ML)	(CM)		HR	MIN	(min)	(MG/1)	(uM-N)	(uM-N)	(uM-P)	(uM-SI)
HORN.PT	29-AUG-84	SILVER	1150	8.214285	0	12	0		3.95	9.7	0.8	0.87	74.6
			1150	8.214285	56	12	56	56	3.45	12.1	0.84	0.6	84.8
			1150	8.214285	116	13	56	60	3.15	2.4	0.94	0.45	82.5
			1150	8.214285	176	14	56	60	2.51	1.5	0.99	0.46	85.8
			1150	8.214285	245	16	5	69	2.23	2.5	0.68	0.43	86.7
			1150	8.214285	305	17	5	60		2.1	0.62	0.37	88.1
HORN. PT	29-AUG-84	WHITE	960	6.857142	0	12	0		4.15	16.6	1.42	1.62	81.5
			960	6.857142	56	12	56	56	2.3	12.7	1.17	1.11	94.5
			960	6.857142	116	13	56	60	0.66	2.3	1.62	0.83	104
			960	6.857142	178	14	58	62	0.66	0.4	0.47	0.7	111
			960	6.857142	245	16	5	67	0.58	0.7	0.51	0.97	117
			960	6.86	310	17	10	65		0.4	1.09	1.64	120
HORN. PT	29-AU5-84	RED	94 0	6.714285	Ō	12	0		5.05	13.9	0.67	1.0B	81
			940	6.714285	56	12	56	56	3.7	5.3	0.86	0.77	81
			940	6.714285	116	13	56	60	2.25	5	1.17	0.4	91
			940	6.714285	180	15	0	64	1.18	0.4	1.16	0.44	91
			940	6.714285	245	16	5	65	1.53	0.4	0.86	0.47	100
			940	6.714285	314	17	54	49		0.5	0.52	0.38	103

;
LONG-TERM BIOMONITORING PROGRAM SEDIMENT-WATER EXCHANGE COMPONENT

SEDIMENT-WATER FLUXES

.

- -

		CORE	CORE	CORE H20	TIME	TINE	OF						
STATION	DATE	NO.	VOL	HEIGHT	(SUM)	SAMPL	Ε	DELTA T	DO	NH4	NO3+NO2	DIP	5I (OH) 4
			(ML)	(CM) 		HR	MIN	(min)	(MG/1)	(uM-N)	(uM-N)	(uM-P)	(uM-SI)
WIND.HL	29-AUG-84	1	1255	8.964285	0	14	35		5.74	7.9	0.78	1.59	42.9
			1255	8.964285	47	15	22	47	6.09	9.7	1.39	1.53	55.6
			1255	8.964285	117	16	32	70	6.04	12.6	1.35	1.46	53.5
			1255	8.964285	195	17	50	78	5.9	13.3	2.76	1.44	54.2
			1255	8.964285	255	18	50	60	5.55	13	3.1	1.39	55.9
			1255	8.964285	315	19	50	60	4.87	12.6	2.53	1.14	62.7
WIND.HL	29-AU6-84	2	0	0	0	14	35		5.76	10	0.82	1.67	44.8
			1074	7.671428	50	15	25	50	5.96	14	1.73	1.83	49.2
			1074	7.671428	119	16	34	69	5.61	17.8	1.5	1.85	53.2
			1074	7.671428	195	17	50	76	5.34	19	1.4	1.68	60.4
			1074	7.671428	255	18	50	60	5.02	21.7	2.16	1.56	58.7
			1074	7.671428	323	19	5B	68	4.45	23.8	2.33	1.5	63.3
WIND.HL	29 AUG 84	2	655	4.678571	0	14	35		5.84	49.6	2.78	2.93	72.4
			655	4.678571	50	15	25	50	5.87	45.4	3.22	2.68	74.2
			655	4.678571	123	16	38	73	5.33	54.2	2.79	2.4	\$5.5
			655	4.678571	195	17	50	72	4.91	54.6	5.25	2.35	95.6
			655	4.678571	255	18	50	6 0	4.44	60.7	3.16	2.35	106
			655	4.678571	295	19	30	40	3.57	60.5	3.12	1.9	110
			655	4.678571	315	19	50	20	3.5	59.3	3.48	1.8	113
										_ · · · •			

LONG-TERM BIDMONITORING FROGRAM SEDIMENT-WATER EXCHANGE COMPONENT

SEDIMENT-WATER FLUXES

STATION	DATE	CORE NO.	CORE Vol	CORE H20 HEIGHT	TIME (SUM)	TIME SAMPL	0F E	DELTA T	DO	NH4	N03+N02	DIP	51 (OH) 4
			(ML)	(CM)		HR	HIN	(min)	(HG/1)	(uM-N)	(uM-N)	(uM-P)	(uM-SI)
RAG.PT	29-AUG-84	RED	850	6.071428	 ()	13	17		2.71	97.2	1.7	11.2	81.4
			850	6.071428	62	14	19	62	2.85	128	1.42	11.3	94.3
			850	6.071428	120	15	17	58	2.74	144	0.96	11	108
			850	6.071428	176	16	13	56	2.56	155	0.95	11.8	118
			850	5.071428	250	17	27	74	2.02	173	1.22	14.3	126
			850	6.071428	296	18	13	46	1.41	165	0.69	13.7	139
			850	6.071428	331	18	48	35	1.41	164	1.55	14.1	139
			850	6.071428	369	19	26	38	0.54	157	1.1	13.1	142
RAG.PT	28-AU6-84	WHITE	950	6.785714	0	13	17		3.56	34.4	1.42	5.1	70
			950	6.785714	65	14	22	ó5	3.48	52.2	1.12	6.9	81
			950	6.785714	125	15	22	60	2.82	62.8	0.62	7.4	98
			950	6.785714	179	16	16	54	2.3	65.7	0.8	8.5	94
			950	6.785714	252	17	29	73	1.54	65.2	0.67	9.3	104
			950	6.785714	300	18	17	48	1.15	56.8	0.69	9.6	108
			950	6.785714	371	19	28	71		35.6	0.52	7.8	118
RAG.PT	28-AUG-84	SILVER	860	6.142857	0	13	18		3.63	30	0.92	4.1	72
			860	6.142857	67	14	25	67	2.84	49.7	0.91	6.7	86
			860	6.142857	126	15	24	59	1.79	64	0.93	9.2	99
			860	6.142857	185	16	23	59	1.11	69.4	0.69	10.6	109
			B60	6.142857	254	. 17	32	69	0.19	73.5	0.3B	11.8	119
			860	6.142857	301	18	19	47	0.12	74	0.7	12.5	128
			B60	6.142857	372	19	30	71	0.05	70.1	1.08	13	135

LONG-TERN BIOMONITORING PROGRAM SEDIMENT-WATER EXCHANGE COMPONENT

SEDIMENT-WATER FLUXES CORE CORE H20 TIME TIME OF Vol Height (SUM) sample delta t do NH4 NO3+NO2 dip CORE CORE CORE H20 TIME NG. STATION DATE SI (OH) 4 (ML) (CM) HR MIN (main) (MG/1) (uM-N) (uM-P) (uM-SI) ------------------
 960
 6.857142
 0
 18
 56
 6.25
 12.8
 35.8
 36.0
 35.8
 35.8
 35.8
 36.0
 35.8
 35.8
 36.0
 35.8
 35.8
 35.8
 35.8
 35.8
 35.5
 35.6
 35.5
 35.6
 35.5
 35.6
 35.5
 35.6
 35.6
 35.1
 35.1
 35.6
 35.1
 35.6
 35.1
 35.6
 35.1
 35.6
 35.6
 35.1
 35.6
 35.6
 35.6
 35.1
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35.6
 35. MD.FT 28-AUG-84 GREEN 2.89 44.3 2.52 52.6 1.79 79.6 4.55 14.1 33.6 1.62 67.3

 820
 5.857142
 0
 19
 0
 5.1
 37

 820
 5.857142
 60
 20
 0
 60
 4.35
 34
 28.5
 1.86
 55.5

 820
 5.857142
 116
 20
 56
 56
 4
 33.4
 31.7
 1.42
 61.7

 820
 5.857142
 174
 21
 54
 58
 3.6
 32.5
 25.2
 0.96
 64.9

MD.PT 28-AUG-84 BLUE 11007.85714201904.959.5361.2849.411007.85714260200604.3512.635.10.8756.211007.8571421162056563.9511.333.60.7360.511007.8571421742154583.659.4320.4864 MD.PT 28-AUG-84 BLACK

. .

LONG-TERM BIDMONITORING PROGRAM SEDIMENT-WATER EXCHANGE COMPONENT

SEDIMENT-WATER FLUXES

STATION	DATE	CORE ND.	CORE VOL	CORE H20 HEIGHT	TIME (SUM)	TIME SAMPL	OF E	DELTA T	DO	NH4	N03+N02	DIP	SI (OK) 4
			(ML)	(CM)		HR	MIN	(min)	(MG/1)	(uM-N)	(uM-N)	(uM-P)	(uM-SI)
PT.NO.PT	28-AUG-84	SREEN	900	6.428571	 0	 11	25		4.6	19.8	0.71	1.13	64.3
			900	6.428571	79	12	44	79	4.6	20	1.25	0.79	69.2
			900	6.428571	138	13	43	59	4.8	18.5	1	0.59	81.2
			9 00	6.428571	197	14	42	59	4.5	18	0.76	0.51	87
			900	6.428571	259	15	44	62	4.35	13.2	0.99	0.4	89.7
			900	6.428571	319	16	44	60	4.4	10.1	1.19	0.39	54.4
PT.NO.PT	28-AUG-84	BLUE	78 0	7	0	11	25		4.15	16.4	0.67	1.02	62.9
			980	7	79	12	44	79	4	15.5	0.94	0.75	69
			58 0	7	138	13	43	59	4	14.2	0.97	0.63	75
			980	7	197	14	42	59	3.75	11.4	0.86	0.34	80.6
			980	7	259	15	44	62	3.45	7.9	0.74	0.3	85.4
			98 0	7	319	16	44	60	3.5	5.5	1.36	0.47	92.6
PT.NO.PT	28-AUG- 84	BLACK	1130	8.071428	0	11	25		3.6	23.1	0.84	1.34	66.4
			1130	8.071428	79	12	44	79	3.5	20.8	1.36	0.86	73.5
			1130	8.071428	138	13	43	59	3.75	16.6	0.98	0.5	79.7
			1130	8.071428	197	14	42	59	3.25	12.4	1.18	0.35	84.9
			1130	8.071428	259	15	44	62	3.3	7.4	1.35	0.3	89.5
			1130	B.071428	319	16	44	60	3.25	4.4	1.11	0.31	94.5

.....

LONG-TERM BIOMONITORING PROGRAM SEDIMENT-WATER EXCHANGE COMPONENT

TIME OF CORE CORE CORE H20 TIME SAMPLE DELTA T DO NH4 STATION DATE NO. VOL HEIGHT (SUM) NO3+NO2 DIP SI(CH)4 HR MIN (min) (MG/1) (uM-N) (uM-N) (uM-P) (uM-SI) (ML) (CM)

 900
 6.428571
 0
 9
 25

 900
 6.428571
 49
 10
 14
 49
 2.82
 36.4
 2.82

 900
 6.428571
 122
 11
 27
 73
 0.37
 29.1
 1.21

 900
 6.428571
 122
 11
 27
 73
 0.37
 29.1
 1.21

 900
 6.428571
 170
 12
 15
 48
 0.07
 27.4
 0.46

 900
 6.428571
 230
 13
 15
 60
 0.03
 27.5
 0.28

 15
 60
 0.02
 22.1
 0.21

R-64 29-AUG-84 GREEN 1.74 57.8 2.82 36.4 2.04 1.85 71.6 1.17 - 98 1.4 100 1.84 114 1.74 123 R-64 29-AU6-84 BLUE 1000 7.142857 9 38 Û 25 3.15 0.93 2.84 - 67 49 125 14 30 17 1000 7.142857 10 49 43 1.02 2.94 2.8 76 40 0.69 11 2.07 1000 7.142857 76 2.03 89 1000 7.142857 172 12 47 1.28 31.6 0.93 1.44 - 96 1000 7.142857 233 13 18 61 0.1 15.9 0.38 0.72 106 294 14 1000 7.142857 19 61 0.16 12.4 0.4 0.51 117 25 14 32 19 U 49 R-64 29-AUG-84 BLACK 945 6.75 9 3.84 28.9 0.76 2.16 67 945 6.75 10 49 33.2 0.73 3.14 2.15 76 127 11 78 945 6.75 2.37 32.3 0.68 1.77 86 945 6.75 174 12 28 0.6 47 1.88 1.58 93 21 945 6.75 236 1.11 18.1 0.48 13 62 1.18 103

6.75 297 14 22

61

0.57 9.1 0.38

1.01

111

945

SEDIMENT-WATER FLUXES

LONG-TERM BIOMONITORING PROGRAM SEDIMENT-WATER EXCHANGE COMPONENT

SEDIMENT-WATER FLUXES

-	STATION	DATE	CORE ND.	CORE VDL (ML)	CORE H2O HEIGHT (CM)	TIME (SUM)	TIME (SAMPLE HR	JF E Min	DELTA T (min)	DO (MG/1)	NH4 (uM-N)	NO3+ND2 (um-N)	DIP (uM-P)	SI(OH)4 (uM-SI)
	TOM.PT	30-AUG-84	RED	1055	7.535714	Ú	11	17		3.61	 26.6	4.65	2.22	61.9
				1055	7.535714	63	12	20	63	3.84	28.7	4.74	1.53	61.9
				1055	7.535714	123	13	20	60	3.41	24.9	4.41	0.96	64
~				1055	7.535714	183	14	20	60	2.36	15.3	4.38	0.39	69.3
				1055	7.535714	273	15	50	90	1.13	3.2	4.21	0.41	73
	TOM.PT	30-AU6-84	WHITE	1000	7.142857	0	11	17		3.38	20.4	3.71	1.85	61.6
				1000	7.142857	63	12	20	63	2.64	10.6	3.92	0.67	61.1
				1000	7.142857	123	13	20	60	1.54	0.4	2.65	0.32	63.5
···				1000	7.142857	183	14	20	60	0.6	0.4	0.17	0.29	7û
				1000	7.142857	278	15	55	95	0.22	0.4	0.83	0.3	74.8
	TOK.PT	30-AUG-84	SILVER	790	7.071428	0	11	17		3.51	28.8	4.83	2.67	61.4
				99 0	7.071428	66	12	23	66	2.95	24.1	4.42	1.51	66.9
				990	7.071428	123	13	20	57	2.43	18.8	4.29	0.86	67.9
				990	7.071428	188	14	25	65	1.67	7.9	8.44	1	74.1
				99 0	7.071428	283	16	0	95	0.96	0.7	1.13	0.5	80

LONG-TERM BIOMONITORING PROGRAM SEDIMENT-WATER EXCHANGE COMPONENT

TIME TINE OF (SUN) SAMPLE DELTA T DO NH4 NO3+NO2 DIP SI(OH)4 CORE CORE CORE H20 TIME STATION DATE NO. VOL HEIGHT (HL) (CM) HR HIN (min) (HG/1) (uH-N) (uH-P) (uH-SI) 11157.96428508455.221.14711157.96428540925404.6522.546.411157.9642851001025603.919.943.611157.9642851601125603.118.342.911157.9642852351240753.3218.341.611157.9642852951340602.9515.641.4 STIL.PD 30-AUG-84 GREEN 0.75 52.2 46.4 0.61 55.1 0.32 60.6 3.1 18.3 42.9 0.24 60.5 3.32 18.3 41.6 0.19 63.7 0.13 69.1 9106.508459106.540725409106.51001025609106.51601125609106.52351240759106.5295134060 STIL.PD 30-AUG-84 BLUE 5.4 21.5 46.3 53.2 0.55 4.35 21 45.5 0.27 58 60 3.9 18.9 43 0.21 62.7 1.8 15.6 39.4 0.12 69.7 14.4 35.1 0.09 75.9 1.4 1.25 13.4 32 0.11 Bi.3 9206.57142808455.9525.847.50.4652.29206.57142840925405.124.547.60.2555.79206.571428100102560419.646.70.15619206.5714281601125602.6514.545.20.1162.29206.5714282351240751.8810.143.20.163.89206.5714282951340601.76.140.60.168.5 STIL.PD 30-AUG-84 BLACK

SEDIMENT-WATER FLUXES

1

, ----,

--ر ز

 $\overline{}$

~

 $\sum_{i=1}^{n}$

 $\overline{}$

 BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

		CO	CORE	CORE H20	TIME	TI	ME OF							
STATION	DATE	ND	VDL	HEIGHT	(SUM)	SA	MPLE	DELTA	DD	AA VIAL	NH4	NO3+N	DIP	SI (OH) 4
			(ML)	(M)		HR	MIN	(min)	(MG/	NO.	(uM-N)	(uM-N	(uX-P)	(uM-SI)
ST.LEO	17-0CT-	84RE	1795	0.1291	0	15	55	0	7.6	156	7.8	4.18	0.63	28
				0.0000	30	16	25	30	7.5	160	7.7	4.38	0.65	28.5
				0.0000	60	16	55	30	7.3	164	8.5	4.95	0.71	29.7
x				0.0000	121	17	56	61	7	168	7.9	5.06	0.7	30.7
				0.0000	155	18	30	34	6.9	172	8.8	5.34	0.68	30.3
				0.0000	- 185	19	0	30	6.B	176	7.B	5.7	0.74	32
				0.0000	235	19	50	50	6.6					
		WH	2145	0.1543	0	15	55	0	7.5	157	8	4.47	0.65	26.7
				0.0000	30	16	25	30	7.4	161	8.3	4.36	0.74	27.3
				0.0000	60	16	55	30	7.3	165	8.5	4.57	0.68	27.9
				0.0000	121	17	56	61	7.1	169	8.8	4.79	0.73	29.1
				0.0000	155	18	30	34	7	173	8.7	5.08	0.74	28.7
				0.0000	185	19	0	30	6.9	177	8.9	4.97	0.73	29.8
				0.0000	235	19	50	50	6.8					
		BL	1965	0.1414	Û	15	55	0	7.8	158	8	4.15	0.64	28.3
				0.0000	30	16	25	30	7.7	162	8.2	4.36	0.73	29.4
				0.0000	60	16	55	30	7.6	166	8.2	4.47	0.71	29.7
				0.0000	121	17	56	61	7.4	170	8.4	4.62	0.79	30.6
				0.0000	155	18	- 30	34	7.3	174	8.6	4.95	0.75	31.9
				0.0000	185	19	0	30	7.2	178	B.9	4.96	0.81	30.B
				0.0000	235	19	50	50	6.9					
		BL	ANK1	0.0000	0	15	- 55	0	8.1	155	8.6	4.08	0.52	26.7
				0.0000	30	16	25	30	8.1	159	7.7	3.99	0.59	26.1
				0.0000	60	16	55	30	8.2	163	7.8	4.07	0.54	26.2
				0.0000	121	17	56	- 61	8.3	167	7.8	4	0.57	26.1
				0.0000	175	18	50	54	8.2	171	7.8	4.14	0.69	25.6
				0.0000	185	19	0	10	8.2	175	8	4.1	0.53	26

 $\overline{}$

TIME OF CO CORE CORE H20 TIME HEIGHT (SUM) SAMPLE DELTA DO AA VIAL NH4 NO3+N DIP SI (OH) 4 STATION DATE NO VOL (ML) (M) HR MIN (min) (MG/ NO. (uM-N) (uM-N (uM-P) (uM-SI) ---------------------0 8.7 3.1 49 BU. VISTA17-OCT-84RE 1945 0.1399 12 8 07.6 130 1.52 8.9 3.43 0.0000 50 12 58 50 7.4 134 1.55 45.6 54 56 7.1 10.7 3.5 0.0000 106 13 140 1.58 49.7 0.0000 146 - 14 34 40 6.9 144 9.3 3.5B 1.51 48.8 0.0000 15 4 30 6.8 148 8.8 3.7 1.61 46.6 176 10.2 3.33 0.0000 207 15 35 31 6.6 152 1.91 52.3 WH 1910 0.1374 0 12 8 0 7.2 131 8.8 3.08 1.58 46.7 5B 50 7 135 8.9 3.33 1.6 48.5 0.0000 50 12 0.0000 8.9 3 1.36 48.9 106 13 54 56 6.B 141 34 40 6.6 1.58 51.7 14 0.0000 145 9.2 3.73 146 0.0000 149 9.3 3.9 1.61 50.3 176 15 4 30 6.5 0.0000 207 15 35 31 6.5 153 9.5 4.12 1.6 52.5 1.48 46.5 BL 1905 0.1371 0 12 8 0 6.9 132 8.8 3.15 0.0000 50 12 58 50 6.6 136 9 3.15 1.5 48.5 1.6 44 0.0000 106 13 54 56 6.7 142 9.6 3.48 0.0000 14 34 40 6.5 146 10.6 3.47 1.57 47.8 146 1.57 48 0.0000 176 15 - 4 30 6.5 150 10.2 3.66 0.0000 207 15 31 6.4 10.1 4.04 1.64 39.1 35 154 BL 940 0.0676 Û 12 8 0 7.9 129 9 2.98 1.44 46.9 0.0000 50 12 58 50 7.9 133 8.4 2.97 1.48 46.3 0.0000 13 54 56 7.9 139 7.9 2.05 1.07 44.4 106 34 8.7 2.72 1.36 30.3 0.0000 146 14 40 7.9 143 9.4 3.1 1.43 46.2 0.0000 176 15 4 30 B.O 147 0.0000 1.4 42.8 207 15 35 31 8.0 151 9.6 3.02

EIGMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations) BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CO No	CORE Vol	CDRE H20 Height	TIME (SUM)	T I Se	ME OF	DELTA	DO	AA VIAL	NH4	NO3+N	DIP	SI (OH)
			(ML)	(M)		HR	MIN	(æ in)	(M6/	NO.	(uM-N)	(uM-N	(uM-P)	(uM-SI)
HORN. PT	15-0CT·	-84RE	2075	0.1493	0	18	20	0						
				0.0000	30	18	50	30	8.7	33	3.3	2.24	0.38	26.8
				0.0000	60	19	20	30	8.5	3B	4.8	2.27	0.3B	19.6
				0.0000	90	19	50	30	8.4	42	5.8	2.31	0.62	25.2
				0.0000	130	20	30	40	8.2	46	6.1	2.62	0.44	25.7
				0.0000	160	21	0	30	8.0	50	7.9	2.33	0.91	21.7
				0.0000	197	21	37	37	7.9					
				0.0000	250	22	30	53	7.6					
		WH	1950	0.1403	0	18	20	0	8.6	30	3	2.25	0.23	24.2
				6.0000	30	18	50	30	8.4	34	3.9	2.29	0.24	18.2
				0.0000	60	19	20	30	8.3	39	5.4	2.45	0.25	24.2
				0.0000	90	19	50	30	8.1	43	3.5	1.89	0.32	18.6
				0.0000	130	20	30	40	7.9	47	4.4	2.26	0.35	27.3
				0.0000	160	21	0	30	7.7	51	5.3	2.9	0.3	15.6
				0.0000	197	21	37	37	7.6					
				0.0000	250	22	30	53	7.4					
		BL	1850	0.1331	0	1 B	20	0	8.7	31	2.7	1.7	0.18	24
				0.0000	30	18	50	30	8.5	35	3.3	2.49	0.27	26.1
				0.0000	60	19	20	30	8.3	40	4.3	2.41	0.29	28.2
				0.0000	90	19	50	30	8.3	- 44	4	2.66	0.35	29.1
				0.0000	130	20	30	40	7.4	4B	5.2	2.92	0.43	26
				0.0000	160	21	0	30	7.3	52	10	3.03	0.41	24.7
				0.0000	250	21	57							
				0.0000		22	30	90	7.2					
		BL	940	0.0676	0	18	20	0	9.3	32	1.2	1.75	0.27	24.7
				0.0000	30	18	50	30	9.3	36	1.5	1.42	0.13	24.7
				0.0000	60	19	20	30	9.3	37	1.3	1.79	0.19	20.4
				0.0000	90	19	50	30	9.2	41	1.2	1.46	0.16	22.7
				0.0000	130	20	30	40	9.2	45	1.3	1.89	0.17	18.2
				0.0000	160	21	C	30	9.2	49	1.5	1.4	0.19	24.7
				0.0000	197	21	37	37	9.1					
				0.0000	250	22	30	53	9.1					

ſ,

BIGNONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

0T + T 1 011		00	CORE	CORE H20	TIME	TI	IME OF							
SIRIIUN	DRIE	NU.	VUL (ML)	(M)	(500)	HR HR	MIN	(min)	00 (MG/	NO.	NH4 (uM-N)	NUS+N (uM-N	UIP (uM-P)	SI (UR) (UM-SI)
WIND.HIL	15-0CT-8	4RE	1515	0.1090										
				0.0000	Û	14	13	Ũ	7.6	B	7.4	6.07	1.18	40.6
				0.0000	30	14	43	30	7.3	12	9.8	6.07	1.22	39.4
				0.0000	60	15	13	30	7.1	16	10.3	6.05	1.14	44.3
				0.0000	90	15	43	30	6.9	20	11.7	6.03	1.16	43
				0.0000	- 120	16	13	30	6.7	24	14.2	5.98	1.17	45.3
				0.0000	164	16	57	44	6.4					
				0.0000	192	17	25	28	6.2					
				0.0000	224	17	57	32	6.0					
		WH	1460	0.1050	0	13	43	0	8.1	4	4.i	6.7	1.22	41.4
				0.0000	30	14	13	30	8	9	5.7	6.34	1.3	36.1
				0.0000	60	14	43	30	7.6	13	7.4	6.38	1.34	37.4
				0.0000	90	15	13	30	7.3	17	9.4	6.39	1.39	42.7
				0.0000	120	15	43	30	7.1	21	9.8	6.39	1.39	47.1
				0.0000	150	16	13	30	6.9	25	11.2	5.96	1.36	38.3
				0.0000	174	16	57	44						
				0.0000	222	17	25	28	6.4					
				0.0000	254	17	57	32	6.3					
		BL	1490	0.1072	Û	13	43	0	8.1	5	9.2	6.1	1.34	43.9
				0.0000	30	14	13	30	7.7	10	11.6	6.24	1.41	46.9
				0.0000	- 60	14	43	30	7.4	14	13.7	6.12	1.46	50.3
				0.0000	90	15	13	30	7.1	18	16.7	6.12	1.44	53.1
				0.0000	120	15	43	30	6.9	22	16.8	5.52	1.38	53.9
				0.0000	150	16	13	30	6.6	26	17.9	6.12	1.43	57.8
				0.0000	194	16	57	44	6.4					
				0.0000	222	17	25	28	6.3					
				0.0000	254	17	57	32	5.9					
		BL	940	0.0676	0	13	43	0	8.8	6	1.6	6.09	1.02	37.6
				0.0000	30	14	13	30	8.6	7	1.1	6.07	1.07	38.9
				0.0000	60	14	43	30	8.6	11	1.3	5.93	1.05	41.2
				0.0000	90	15	13	- 30	8.5	15	1.2	5.94	1.09	40.9
				0.0000	120	15	43	30	B.4	19	1.3	6.02	1.09	41.3
				0.0000	150	16	13	30	8.6	23	0.9	6.03	1.01	39.5
				0.0000	194	16	57	44	B.6					
				0.0000	222	.17	25	28	8.6					
				0,0000	254	17	57	32	R. 7					

BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

		CO	CORE	CORE H20	TIME	TI	NE OF							
STATION	DATE	NO	VOL	HEIGHT	(SUN)	SA	MPLE	DELTA	DO	AA VIAL	NH4	NO3+N	DIP	SI (OH) 4
			(ML,)	(K)		HR	MIN	(min)	(M6/	NO.	(uM-N)	(uM-N	(uM-P)	(uM-SI)
RAG.PT	18-0CT-84	4RE	2100	0.1511	0	10	48	0	6.6	20 B	10.3	2.3	0.27	16
				0.0000	30	11	18	30	6.5	212	11.4	2.34	0.32	16.3
				0.0000	60	11	4B	30	6.4	216	12.6	2.54	0.96	16.7
				0.0000	94	12	22	- 34	6.3	220	13	2.56	0.34	17
				0.0000	189	13	57	95	5.9	224	15.2	2.78	0.28	20.5
				0.0000	. 222	14	30	23	5.8	228	16	2.83	0.26	20.9
		WH	2280	0.1640	0	10	4B	0	6.8	209	10.1	2.19	0.3	14.5
				0.000	30	11	18	30	6.6	213	10.9	2.39	0.35	15.7
				0.0000	60	11	48	30	6.5	217	11.5	2.49	0.51	13.6
				0.0000	94	12	22	- 34	6.4	221	13.1	2.4	0.49	16.8
				0.0000	189	13	57	95	6.1	225	14.2	2.47	0.26	18.9
				0.0000	222	14	30	33	6	229	14.4	2.97	0.46	20.4
		BL	2300	0.1655	0	10	48	0	6.9	210	10.5	2.3	0.27	15. 7
				0.0000	30	.11	18	30	6.8	214	11.2	2.33	0.34	16.4
				0.0000	60	11	48	30	6.7	218	11.9	2.39	0.27	16.8
				0.0000	94	12	22	- 34	6.6	222	12.2	2.47	0.33	17.5
				0.0000	187	13	57	95	6.2	226	13.9	2.69	0.23	19.5
				0.0000	222	14	30	33	6.1	230	14.9	3.22	0.36	20.7
		BL	ANK1	0.0000	0	10	48	0	6.9	207	8.8	2.31	0.26	13
				0.0000	30	11	18	30	7.0	211	9.2	2.43	0.32	12.5
				0.0000	60	11	48	30	7.0	215	8.9	2.35	0.82	12.8
				0.0000	94	12	22	34	7.1	219	9.8	2.3	0.32	14.3
				0.0000	189	13	57	- 95	7.1	223	9.5	2.3	0.24	13
				0.0000	222	14	30	33	7.1	227	8.6	2.33	0.25	12.9

 \sim

 \sim

 \sim

BIDMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SDNE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SDNE stations)

	CC) CORE	CORE H20	TIME	T	INE OF							
STATION	DATE NO	VOL	HEIGHT	(SUN)	54	MPLE	DELTA	DO	AA VIAL	NH4	N03+N	DIP	SI (DH) 4
		(ML)	(M)		HR	MIN	(min)	(MG/	NO.	(uM-N)	(uM-N	(uM-P)	(uM-SI)
MD.PT	18-0CT-84RE	2550	0.1835	0	i5	42	0	7.2	234	8	31.4	1.52	34.8
			0.0000	30	16	12	30	7.5	238	8.9	31.1	1.58	31.3
			0.0000	60	16	42	30	7.4	242	8.2	31.5	1.51	31.8
			0.0000	90	17	12	30	7.3	246	8.2	31.6	1.52	31
			0.0000	120	17	42	30	7.1	250	8.5	31.4	1.55	31.2
			0.0000	. 150	18	12	30	7.1	254	7.9	31.6	1.55	28.3
	W	1 2485	0.1788	0	15	42	0	7.3	235	7.9	30.7	1.49	30.9
			0.0000	30	16	12	30	7.2	239	8.3	31	1.54	33
			0.0000	60	16	42	30	7.2	243	8	31	1.5	33
			0.0000	90	17	12	30	7.1	247	8.3	31.3	1.66	33.4
			0.0000	120	17	42	30	6.9	251	8.6	31.2	1.58	33.7
			0.0000	150	18	12	30	6.9	255	7.7	31.2	1.52	34
	BI	2525	0.1817	0	15	42	0	7.2	236	7.7	30.7	1.47	33.8
			0.0000	30	16	12	30	7.3	240	8.1	31	1.43	35
			0.0000	60	16	42	30	7.2	244	7.9	30.9	2.09	34.2
			0.0000	90	17	12	30	7.2	248	7.4	31	1.48	34.3
			0.0000	120	17	42	30	7.1	252	7.5	30.9	1.45	35.2
			0.0000	150	1 B	12	30	7.0	256	8.2	31.1	1.51	30.9
	BI	ANK	0.0000	0	15	42	0	7.5	233	8.6	29.6	1.42	35.3
			0.0000	30	16	12	30	7.6	237	8.3	29.6	1.5	34.2
			0.0000	60	16	42	30	7.5	241	8.3	29.7	1.67	34.6
			0.0000	90	17	12	30	7.5	245	8.3	29.8	1.4	34.1
			0.0000	120	17	42	30	7.6	249	7.5	29.6	1.34	35.2
			0.0000	150	18	12	30	7.5	253	8	29.7	1.26	36.4

.

~

~

 $\overline{}$

~

ŗ

BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEOFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CO No	CORÈ Vol (ML)	CORE H20 HEIGHT (M)	TIME (SUM)	T I Sí Hr	INE OF Ample Min		DELTA (min)	D0 (M6/	AA VIAL ND.	NH4 (uK-N)	NO3+N (um-N	DIP (um-P)	SI (OH) 4 (um-SI)
F1.NU.F1	17-001-1	34KE	2400	0.1/2/	0	19		15	0	B	180	8.5	1.84	0.25	13.7
				0.0000	90 05	17		50	22	1.8	186	9.1	1.78	0.22	14.8
				0.0000	54	20		20	60	1.0	190	9.3	1.92	0.23	16.2
				0.0000	155	21		28	38	1.5	194	9.8	2.01	0.22	17.1
				0.0000	165	22		0	32	7.4	198	9.6	2.45	0.27	17.6
				0.0000	195	22		30	30	7.2	202	9.9	2.19	0.21	18.2
		WH	1900	0.1367	0	19		15	0	7.7	181	-9.4	1.49	0.26	15.2
				0.0000	35	19		50	35	7.5	187	9.9	1.58	0.27	16.3
				0.0000	95	20		50	60	7.3	191	10.7	1.72	0.24	18.1
				0.0000	133	21		2B	38	7.2	195	11.3	2.04	0.26	18.9
				0.0000	165	22		0	32	7.0	199	11.6	1.96	0.25	19.8
				0.0000	195	22		30	30	6.9	203	12.5	2.34	0.27	20.6
		BL	2210	0.1590	0	17		15	0	7.5	182	9.6	1.66	0.24	15.5
				0.0000	35	19		50	35	7.4	188	10.2	1.8	0.25	17
				0.0000	95	20		50	60	7.1	192	10.8	2.07	0.23	18.6
				0.0000	133	21		28	38	7	196	11.2	2.26	0.24	19.6
				0.0000	165	22		Û	32	6.8	200	11.6	2.13	0.22	20.6
				0.0000	195	22		30	30	6.7	204	12.2	2.25	0.21	21.5
		BL	ANK2	0.0000	0	19		15	0	8.2	179	8.4	1.25	0.27	13.2
				0.0000	35	19		50	35	8.1	185	8.2	1.34	0.26	13.2
				0.0000	95	20		50	60	B.1	189	8.3	1.52	0.2R	13.6
				0.0000	133	21		28	3B	8.2	193	8.4	1.27	0.26	13.3
				0.0000	165	22		0	32	8.1	197	B. 2	1.28	0.76	13.4
				0.0000	195	22		30	30	R. 1	201	8,1	1.36	0.28	13.4

 $\overline{}$

 \sim

 $\sum_{i=1}^{n}$

 $\overline{}$

STATION I	CI Date Ni) CORE	CORE H20	TIME	·								
		(66)	HE16H1 (M)	(SUM)	TI SA HR	ME OF MPLE MIN	DELTA (min)	DD (M6/	AA VIAL NO.	NH4 (uM-N)	ND3+N (um-N	DIP (um-P)	SI (DH) 4 (um-SI)
R-64 16-	-OCT-84RI	E 1845	0.1327	0	18	27	0	7.1	102	13.8	3.13	0.54	22.1
			0.0000	31	18	58	31	6.8	106	14.4	3	0.4B	24.1
			0.0000	68	19	- 35	37	6.6	112	15.2	2.95	0.45	26.7
			0.0000	106	20	13	38	6.4	116	17.9	3.07	0.55	27.5
			0.0000	148	20	55	42	6.2	120	16.6	2.96	0.46	29.9
			0.0000	208	21	55	60	5.9	124	17.6	2.9	0.45	31.6
	W	H 1800	0.1295	0	18	27	0	7.0	103	13.9	2.46	0.66	22.8
			0.0000	31	18	58	31	6.8	107	16.4	2.45	0.6	24.2
			0.0000	68	19	35	37	6.6	113	15.5	2.68	0.54	27.1
			0.0000	106	20	13	38	6.5	117	16.3	2.45	0.52	27.8
			0.0000	148	20	55	i 42	6.3	121	16.6	2.57	0.51	28.2
			0.0000	208	21	55	60	6.0	125	18.5	2.53	0.59	34.3
	В	L 1670	0.1201	0	18	27	0	7.1	104	13.6	2.9	0.4	21.3
			0.0000	31	18	58	31		10B	13.7	2.83	0.42	22.2
			0.0000	68	19	35	i 37	6.8	114	14.1	3.07	0.45	25.3
			0.0000	106	20	13	3B	6.6	11B	15.3	3.03	0.44	27.2
			0.0000	148	20	55	42	6.5	122	15.1	2.99	0.4	29.2
			0.0000	20B	21	55	60	6.3	126	16.9	3.12	0.45	32.9
	8	LANK2	0.0000	Ô	18	27	0	7.4	101	12.2	2	0.51	18.6
	-		0.0000	31	18	58	31	7.8	105	14.7	2.21	0.45	18.6
			0,0000	68	19	35	37	7.6	111	17.7	2.44	0.49	19.2
			0.0000	104	20	17		7.6	[15	12.9	7.14	0.44	18.1
			0.0000	149	20		, JU 1 12	7.9	110	12 4	2.2	0.47	19.1
			0 0000	708	21	51	, 11 , 10	7 0	197	17 1	7 77	A 41	10 7

BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations) At time of scanning 1/16/2007, no page was found for No. 4-21

U

SIGMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANCES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

												****		****
	C	:0	CORE	CORE H20	TIME	TI	ME OF							
STATION	DATE N	10	VOL	HEIGHT	(SUM)	SA	MPLE	DELTA	DO	AA VIAL	NH4	ND3+N	DIP	SI (OH) 4
			(ML)	(M)		HR	MIN	(min)	(MG/	NO.	(uM-N)	(uM-N	(uM-P)	(uM-SI)
STIL.PD	16-0CT-84F	RE	2025	0.1457	0	10	5	0	8.4	56	6.9	29.4	0.31	25.7
				0.0000	40	10	45	40	8.4	60	7.3	29.4	0.35	25.6
				0.0000	70	11	15	30	8.2	64	7.6	29.5	0.38	25.6
				0.0000	143	12	28	73	7.9	69	8.B	29.5	0.47	27.7
				0.0000	183	13	8	40	7.8	74	9.2	29.4	0.35	27.6
				0.000	213	13	38	30	7.7	78	9.5	28.9	0.37	23.1
	Ļ	¢Η	2050	0.1475	0	10	5	0	8	57	7.7	29.8	0.32	26.2
				0.0000	40	10	45	4 0	7.9	61	7.3	30.2	0.35	23.6
				0.0000	70	11	15	30	7.8	65	7.5	29.5	0.36	22.5
				0.0000	143	12	28	73	7.5	70	8.5	29.6	0.33	21.9
				0.0000	183	13	8	40	7.4	75	8.9	29.7	0.4	23
				0.0000	213	13	38	30	7.4	79	9.4	24.6	0.36	12.5
	E	BL	2090	0.1504	0	10	5	0	8	58	7	29.8	0.32	26.6
				0.0000	40	10	45	40	7.9	62	8.1	29.8	0.32	26.1
				0.0000	70	11	15	30	7.8	66	9.1	29.4	0.32	27.2
				0.0000	143	12	28	73	7.7	71	8.3	29.7	0.3	25.9
				0.0000	183	13	8	40						
				0.0000	213	13	38	30	7.4	80	9.3	17.2	0.3	27.2
	I	BL	94 0	0.0676	0	10	5	0	8.8	55	5.3	29.2	0.42	24.7
				0.0000	40	10	45	40	8.8	59	5.2	28.5	0.25	25.4
				0.0000	70	11	15	30	8.8	63	5.1	29.7	0.37	17.2
				0.0000	143	12	28	73	8.7	68	4.B	29	0.3	16.7
				0.0000	183	13	8	40	8.8	73	5.2	18	0.21	23.9
				0.0000	213	13	38	30	7.9	77	5.3	2B.5	0.3	23.6

-

 \sim

 \sim

 $\overline{}$

 \sim

 \sim

 $\overline{\ }$

BIOHONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SOME) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SOME stations)

STATION	DATE	CD NO	CORE Vol (ML)	CORE H20 HEIGHT (N)	TIME (SUM)	T I Sf Hr	NE OF IMPLE Min	DELTA (min)	D0 (M6/	AA VIAL ND.	NH4 (uM-N)	ND3+N (uM-N	DIP (um-P)	SI(OH)4 (uM-SI)
ST.LED	6-MAY-85	BL	A1	0.0000	0	10	40	0	7.3					
				0.0000	15	10	55	15		2	5.1	6.6	0.37	8.5
				0.0000	50	11	30	35	6.6	6	5.6	6.6	0.27	7.4
				0.0000	121	12	41	71	6.7	12	5.1	6.6	0.22	7.4
				0.0000	170	13	30	49	6.6	17	5.1	6.5	0.23	7.8
				0.0000	200	14	0	30	6.7	21	5.5	6.7	0.61	7.9
				0.0000	245	14	45	45	6.9	29	5.4	6.6	0.26	B.3
		GR	2750	0.1978	0	10	40	0	6.4					
				0.0000	22	11	2	22		3	5.8	6.1	0.19	12.2
				0.0000	50	11	- 30	28	6.0	B	5.4	6.2	0.21	15.8
				0.0000	121	12	41	71	5.3	13	6.8	6.2	0.23	19.3
				0.0000	170	13	30	49	4.9	18	7.3	6.3	0.25	22
				0.0000	200	14	0	. 30	4.8	22	7.9	6.4	0.38	24.3
				0.0000	245	14	45	45	4.3	30	8.6	6.2	0.28	26.9
		RE	2650	0.1906	0	10	40	- 0	6.3					
				0.0000	25	11	5	25		4	5.5	6.4	0.2	13.2
				0.0000	50	- 11	30	25	6.2	9	. 7	6.3	0.24	19.B
				0.0000	121	12	41	71	5.6	14	6.4	6.3	0.24	19.6
				0.0000	170	13	30	49	5.2	19	7.5	6.3	0.27	22.4
				0.0000	200	14	0	30	4.9	23	8.3	6.4	0.27	23.9
				0.0000	245	14	45	45	4.6	31	8.3	6.3	0.31	26.5
		BL	2590	0.1863	0	10	40	0	6.4					
				0.0000	29	11	9	29		5	5.9	6.2	0.24	14.1
				0.0000	50	11	30	21	5.9	10	5.9	6.2	0.27	15.9
				0.0000	121	12	41	71	5.2	15	6.6	6.1	0.25	20.8
				0.0000	170	13	30	49	4.7	20	7	6.1	0.25	23.9
				0.0000	200	14	0	30	4.5	24	7.5	6.2	0.29	25.6
				0.0000	245	14	45	45	2.7	32	7.8	6.1	0.27	27.9

_,

 $\overline{}$

EIGMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	co ND	CORE VOL	COF Hi	RE H20 E16HT (M)	TIM (SUM	E) 	tim Sam HR	E OF IPLE Min	DEL (mi	.TA .n)	D0 (MG/	aa V NC	/IAL).	N (uf	1H4 1-n) 	NO3+N (um-N	DI (u)	P 9 (-P)	1 (OH 1 uM-9
BU. VISTA6	 -Xay-85	BL	ANK		0.0000 0.0000 0.0000 0.0000 0.0000) 1	0 45 75 05 35	14 15 15 16 16		25 10 40 10 40 50	0 45 30 30 30 3(7(8.3 8.4 8.4 8.3 8.3 8.2 8.1		25 33 37 4 4 5	5 5 7 1 5 60	0.5 0.7 0.9 1.3 0.6 0.6	1.6 1.5 1.4 1.4 1.5 1.5		0.89 1.15 0.94 1.03 1.05 0.83	27.2 26.3 24. 25. 22. 24.
		ł	GR 302	22	0.0000 0.217 0.000 0.000 0.000 0.000	4 90 90 90 90	0 45 75 105 135	14 15 15 16 16		25 10 40 10 40 50	4	0 5 7.0 50 7. 50 7. 50 7. 50 7.	6 4 2 .1		26 34 38 42 46 51	1.9 1. 1. 2. 1. 2.	1 1.1 3 2. 3 1. 8 2. 4 2.	7 B 1 9 .1	1.95 1.02 1.17 2.37 1.17 1.3	33 7 30 5 30 2 3
			RE 21	510	0.00 0.18 0.0(0.0) 0.0	00 306 000 000 000 000	203 0 45 75 105 135		5 5 6 7	25 10 40 10 40 50		0 45 7 30 6 30 6 30 6 70	.1 9.8 9.7 6.5 6.2		27 35 39 43 47 52	0 1 2	.9 1 .3 1 .4 2 2.5 2.5 2.7	.5 .7 2.1 2 1.8 2.2	0.5	22 2 26 3 06 3 02 3 27 21
			BL	2422	0.0 2 0.1 0. 0. 0.	1742 0000 0000 0000 0000 0000	4 7 10 11 11 20	0 5 5 5 5 5 5 5 5 5 5 5	14 15 15 16 16 17	25 1 4 1 4	5 0 0 0 10 50	0 45 30 30 30 70	7.6 7.3 6.7 6.8 6.2		21 3 4 4	8 6 10 14 53	1.7 3.2 6.6 3 3.9 4.7	2.4 2.3 2.5 2.4 2.3 3	1 2 2 1 1	.38 .33 .75 .46 .46

BIGMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

		CO	CORE	CORE H20	TIME	Ţ	ME OF							
STRITUN	DAIE	NU	VUL (ML)	HE 16H 1 (M)	(SUM)	HR	MPLE MIN	UEL11 (min)	N DU (MG/	AA VIAL ND.	NH4 (uM-N)	NO3+N (uM-N	DIP (uM-P)	SI(OH)4 (uM-SI)
HORN PT.7	-MAY-85	BLI	ANK	0.0000	0	12	1	5) 7.2	107	2.9	 6.1	0.34	2.7
				0.0000	28	12	4	1 2	7.5	111	2.5	6.4	0.37	2.7
	•			0.0000	59	13	1	5 3	7.3	115	2.5	6.1	0.14	2.7
				0.0000	89	13	4	5 30	7.4	119	2.7	6.3	0.28	5.7
				0.0000	124	14	2) 3	5 7.5	123	2.7	6.2	0.2B	2.6
				0.0000	. 174	15	1) 5	7.5	127	2.9	6.4	0.34	4.7
		6R	2350	0.1691	0	12	1	5 1) 7.5	108	3.4	5.9	0.41	6.9
				0.0000	28	12	4	1 2	17.4	112	3.9	5.B	0.34	9.4
				0.0000	59	13	1	53	7.1	. 116	4,4	5.7	0.33	10.8
				0.0000	89	13	4	5 34	6.7	120	5.1	5.7	0.22	12.6
				0.0000	124	14	2) - 3	5 6.4	124	6	5.7	0.65	18.2
				0.0000	174	15	1) 5) 6.0	128	6.7	5.5	0.32	19.3
		RE	2150	0.1547	0	12	1	5 (7.1	109	3.5	5.9	0.31	9.7
				0.0000	28	12	4	2	1 6.9	113	4	5.9	0.38	10.8
				0.0000	59	13	1	5 3	6.5	117	4.7	5.7	0.36	12.9
				0.0000	89	13	4	5 3	6.3	121	5.1	5.7	0.41	15.6
				0.0000	124	14	2) 3	5 5.9	125	5.5	6	0.41	17
				0.0000	174	15	1) 5) 5.5	129	6.7	5.6	0.58	21
		BL	2352	0.1692	0	12	1	6	7.8	110	3.5	6.1	0.48	8.5
				0.000	28	12	4	4 2	3 7.7	-114	4.2	6.2	0.49	7.8
				0.0000	59	13	1	53	7.5	118	4.9	5.8	0.53	14.1
				0.0000	87	13	4	5 3) 7.2	122	5.1	5.8	0.5	15.5
				0.0000	124	14	2) 3	5 6.9	126	5.9	5.7	0.58	17.7
				0.0000	174	15	1) 5	6.5	130	7	5.6	0.55	21.1

 BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION D)ATE	co No	CORE Vol (ML)	CORE H20 HEIGHT (M)	TIME (SUM)	T : Si HR	IME OF Ample Min	DELT4 (min)	i do (Mg/	AA VIAL NO.	NH4 (uM-N)	ND3+N (uM-N	DIP (uM-P)	SI (OH) 4 (uM-SI)
WIND.HIL7-K	1AY-85	RL	ANK	0.0000	 0	 8	 4	 0 (Q 1		 74 Q	Λ 4R	0 1
				0.0000	30	ç	1	0 3(6.9	85	i A	74.9	0.00	0.1 Q T
				0.0000	70	Ģ	5	0 4 (7.0	90	1 9	24.0	0.77	17.2
				0.0000	100	10	2	0 30	6.9	94	1.3	24.6	0.65	14 1
				0.0000	130	10	5	0 30	7.0	92	1.4	24.6	0.65	34
				0.0000	185	11	4	5 55	5.1	103	2.2	24.9	0.58	8
		6E	2884	0.2075	0	8	4	0 (7.1	82	1.2	24	0.7	9.5
				0.0000	30	9	1	0 3(6.6	86	2.5	23.B	0.64	11.3
				0.0000	70	9	5	0 4(6.1	91	1.6	24.6	0.66	12.1
				0,0000	100	10	2	0 3(5.7	95	1.7	24.2	0.82	13
				0.0000	130	10	s J	0 3(5.4	99	i.8	24	0.79	14.6
				0.0000	185	11	4	5 55	4.9	104	2.1	24.2	0.86	17.7
		RE	2542	0.1829	0	8	4	0 (7.0	83	1.7	24	1.29	10.6
				0.0000	30	9	1	0 3(6.5	87	5.2	23.6	0.73	11.9
				0.0000	70	9	5	0 4(5.8	92	1.5	23.8	0.79	20.4
				0.0000	100	10	- 2	0 30	5.4	96	1.8	23.7	0.81	16.8
				0.0000	130	10	5	0 3(5.1	100	1.9	23.7	0.83	15.4
				0.0000	185	11	4	5 55	4.3	105	2.1	24	0.86	21.9
		BL.	2800	0.2014	0	8	4	0 (7.1	84	1.4	26.3	0.77	8.7
				0.0000	30	9	1	0 30	6.5	88	1.6	24.2	0.67	11.6
				0.0000	70	9	5	0 4(5.9	93	3.2	24.7	0.8	14.1
				0.0000	100	10	2	0 30	5.4	97	2.2	24.7	0.76	15.7
				0.0000	130	10	5	0 3(5.2	101	2.5	25.1	0.87	16.2
				0.0000	185	11	4	5 55	4.4	106	3	25.4	0.89	18.4

BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CO No	CORE Vol (ML)	CORE H20 HEIGHT (M)	TIME (SUM)	T I Si HR	IME OF Imple Min	DELTA (min)	D0 (M6/	AA VIAL ND.	NH4 (uM-N)	NO3+N (uM-N	DIP (um-P)	SI(QH)4 (uM-SI)
BAG PT	9-MAY-85	 RI 4	 \NK	0 0000	 6	 ç	·	 ^	 4 7	711	 g	 5 4		
inter :	- 1011 - 9 0	·		8.0000	50	, q	5/	50	4.4	211	81	6.7	0.21	10.2
				0.0000	100	10	۵۵ ۵۲	50	4.4	210	7.8	5.7	0.7	17.1
				0.0000	160	11	4(60	4.6	217	8.2	5.7	0.27	10.7
				0.0000	227	12	47	67	4.4	237	7.5	6.1	0.18	10.9
				0.0000	280	13	4(53	3,8	245	8	5.8	0.2	14.4
		6R	2650	0.1906	0	9	(0	4.6	212	10	5.3	0.43	13.1
				0.0000	50	9	5(50	4.3	216	12.4	5.4	0.59	21.9
				0.0000	100	10	4(50	3.8	220	15.2	4.7	0.6	20
				0.0000	160	11	4(50	3.3	225	17.3	4.7	0.96	21.1
				0.0000	227	12	47	67	2.8	238	17.9	4	0.8	23.8
				0.0000	280	13	4(53	2.4	246	21.7	3.6	1.07	26
		RE	2700	0.1942	Q	9	(0	3.8	213	9	5.6	0.29	11.9
				0.0000	50	9	5(50	3.6	217	9.9	5.6	0.22	15.8
				0.0000	100	10	4(50	3.3	221	11.2	5.1	0.27	14.9
				0.0000	160	11	4(66 (3.0	226	12.4	4.9	0.24	16
				0.0000	227	12	47	67	2.7	239	14.7	4.5	0.54	18.2
				0.0000	280	13	4(53	2.5	247	15.5	4.3	0.41	20.9
		BL	2920	0.2101	0	9	() ()	3.6	214	10.1	5.3	0.33	12.7
				0.0000	50	9	5() 50	3.3	218	11.4	5.1	0.48	19
				0.0000	100	10	4() 50	3.0	222	13.4	4.8	0.55	18.2
				0.0000	160	11	4(60	2.7	228	14.8	4.6	0.51	21.5
				0.0000	227	12	47	67	2.3	240	16.4	4.2	0.77	22.8
				0.0000	280	13	4(53	2.0	248	17.7	4	0.75	25.2

BICMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

														
		00	CORE	CORE H20	TIME	Ţ	IME OF							
STATION	DATE	ND	VOL	HEIGHT	(SUM)	Sł	MPLE	DELTA	DO	AA VIAL	NH4	NO3+N	DIP	SI (OH) 4
			(ML)	(M)		HR	MIN	(min)	(MG/	NO.	(uM-N)	(uM-N	(uM-P)	(uM-SI)
KD.PT	9-MAY-85	BLI	ANK	0.0000	 0	12	5	0	 6.9	229	 5.3	42.9	0.85	28.4
				0.0000	30	12	35	30	7.0	233	5.1	42.8	0.77	29.1
				0.0000	65	13	10	35	6.4	241	5	42.7	0.75	29.9
				0.0000	115	14	0	50	6.1	249	5.4	43.3	0.86	28.8
				0.0000	145	14	30	30	6.3	253	5.7	42.9	2.03	35.5
				0.0000	205	15	30	60	6.2	257	6.2	42.5	0.8	30.3
		GR	2075	0.1493	0	12	5	0	6.9	230	5.3	42.6	0.85	31.3
				0.0000	30	12	35	30	6.7	234	5.5	42.7	0.82	29.8
				0.0000	65	13	10	35	6.5	242	7	42.4	1.14	33.7
				0.0000	115	14	0	50	6.3	250	5.4	42.6	0.95	32.5
				0.0000	145	14	30	30	6.1	254	7	42.5	0.94	40.2
				0.0000	205	15	30	60	5.9	258	7.9	41.9	1.57	42.3
		RE	2 750	0.1978	Ū	12	5	0	6.4	231	5.4	42.4	0.87	31.1
				0.0000	30	12	35	30	6.3	235	t.9	42.3	0.82	31.6
				0.0000	65	13	10	35	5.9	243	6.5	42	0.92	30.3
				0.0000	115	14	0	50	5.7	251	7	42	0.89	34.7
				0.0000	145	14	30	30	5.6	255	10.4	41.9	2.75	42.1
				0.0000	205	15	30	60	5.3	259	7.4	41.8	0.89	35.2
		BL	2640	0.1899	Û	12	5	0	6.4	232	6.3	42.7	0.82	32.6
				0.0000	30	12	35	30	6.2	236	7	42.4	1.57	34.1
				0.0000	65	13	10	35	6.1	244	6.9	42.7	0.93	31.4
				0.0000	115	14	0	50	5.8	252	7.9	42.6	0.9	33.2
				0.0000	145	14	30	30	5.6	256	8.6	42.2	2.13	39.1
				0.0000	205	15	30	60	5.4	260	B.7	42.1	0.88	34.8

BIDMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

		CO	CORE	CORE H20	TIME	ŢŢ	ME DF							
STATION	DATE	NO	VOL	HEIGHT	(SUM)	SA	MPLE	DELTA	DD	AA VIAL	NH4	NO3+N	DIP	SI (OH) 4
			(ML)	(M)		HR	MIN	(min)	(M6/	NC.	(uM-N)	(uM-N	(uM-P)	(uM-SI)
PT.NO.PT8	-MAY-85	BLI	ANK	0.0000	0	18	10	0	6.2	185	6.7	8.5	0.19	B
				0.0000	30	18	40	30	6.2	189	6.6	8.2	0.17	8.3
				0.0000	80	19	30	50	6.2	193	6.2	8.7	0.32	7.9
				0.0000	130	20	20	50	6.3	197	7	8.3	0.16	7.8
				0.0000	180	21	10	50	6.4	201	6.6	8.2	0.17	8.2
				0.0000	230	22	C	50	6.4	205	6.1	8.4	0.28	8
		GR	2850	0.2050	0	18	1(0	5.8	186	6.9	7.8	0.18	9.1
				0.0000	30	18	4(30	5.8	190	7.7	7.5	0.19	10.7
				0.0000	80	19	30	50	5.7	194	8.6	7.5	0.24	12.2
				0.0000	130	20	20	50	5.5	198	9.8	7.3	0.51	16.2
				0.0000	180	21	10	50	5.3	202	9.9	7.1	0.2	16.2
				0.0000	230	22	(50	5.2	206	10.6	7.1	0.56	18
		RE	2830	0.2036	0	18	1(0	5.8	187	7.8	B	0.14	12.5
				0.0000	30	18	4() 30	5.7	191	7.5	8.2	0.14	10.1
				0.0000	80	19	- 30) 50	5.5	195	8.7	7.8	0.18	13.5
				0.0000	130	20	- 20) 50	5.4	199	9.1	7.5	0.2	14.3
				0.0000	180	21	10) 50	5.2	203	9.9	7.5	0.2	16.4
				0.0000	230	22	() 50	5	207	11.4	7.4	0.2	17.6
		BL	2903	0.2088	0	18	10) ()	6.4	188	7	8.4	0.13	9.5
				0.0000	30	18	4() 30	6.3	192	7.5	7.9	0.15	9.9
				0.0000	80	19	30) 50	6.2	196	7.6	i 8	0.17	11.7
				0.0000	130	20	20) 50	6.0	200	7.9	7.8	0.19	15.3
				0.0000	180	21	10) 50	5.9	204	8	7.6	0.16	14
				0.0000	230	22	() 50	5.8	208	B.5	5 7.5	0.2	14.B

BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

		CO	CORE	CORE H2D	TIME	T1	ME OF							
STATION	DATE	NO	VOL	HEIGHT	(SUN)	SA	MPLE	DELTA	DO	AA VIAL	NH4	N03+N	DIP	SI (OH)
			(ML)	(M)		HR	MIN	(min)	(MG/	NO.	(uM-N)	(uM-N	(uĦ-P)	(uM-SI)
R-64	6-MAY-85	BL	ANK	0.0000	0	19	10	0	5.5	55	5.4	9.5	0.14	5.4
				0.0000	30	19	40	30	5.5	59	5.9	8.4	0.1	4.8
				0.0000	60	20	10	30	5.6	63	6	9.2	0.1	5.5
				0.0000	90	20	40	30	5.6	67	5.6	9	0.16	4.1
				0.0000	120	21	10	30	4.4	71	5.9	9.4	0.16	4.8
				0.0000	130	21	20	10	5.6					
				0.0000	180	22	10	50	5.7	75	6	9.3	0.12	4.7
		6R	2842	0.2045	0	19	10	0	5.6	56	6.2	9.1	0.1	7.5
				0.0000	30	19	40	30	5.5	60	6.4	9.1	0.12	6.6
				0.0000	60	20	10	30	5.5	64	6.9	9.3	0.21	8.6
				0.0000	90	20	40	30	5.3	68	6.7	9.3	0.2	8.3
				0.0000	120	21	10	30	5.2	72	7.6	8.8	0.1	8.4
				0.0000	180	22	10	60	5.0	76	B.3	8.6	0.1	10.3
		RE	2701	0.1943	0	17	10	0	7.1	57	8.2	9.6	0.18	9.2
				0.0000	30	19	40	30	6.5	61	8.3	9.2	0.17	10.2
				0.0000	60	20	10	30	6.5	65	8.2	9	0.17	10.3
				0.0000	90	20	40	30	6.5	69	9.8	8.8	0.19	24.3
				0.0000	- 120	21	10	30	6.5	73	9.9	9	0.25	14.4
				0.0000	180	22	10	60	6.4	77	11.1	8.3	0.16	16.9
		BL	2134	0.1535	0.	19	10	0	6.2	58	6.8	9.1	0.11	7.7
				0.0000	30	19	40	30	6.1	62	7.8	9.1	0.13	B.9
				0.0000	60	20	10	30	5.8	66	8.1	9.1	0.14	13
				0.0000	90	20	40	-30	5.8	70	9	8.8	0.16	10.7
				0.0000	120	21	10	30	5.8	74	9.5	8.7	0.13	13
				0.0000	180	22	10	60	5.6	78	11.4	8.7	0.17	15.3

.

,

2

 $\overline{}$

 $\overline{}$

BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SDNE stations)

		CD	CORE	CORE H20	TIME	T	IME DF							
STATION	DATE	NO	VOL (ML)	HEIGHT (m)	(SUM)	S/ HR	AMPLE Min	DELTA (min)	DO (MG/	AA VIAL ND.	NH4 (uM-N)	ND3+N (um-n	DIP (uM-P)	SI(OH)4 (uM-SI)
R-78	7-MAY-85	BL	ANK	0.0000	0	 18	55	0	5.5	133	4.9	13.6	0.19	6.7
				0.0000	30	19	25	30	5.5	137	4.8	13.4	0.16	2.6
				0.0000	65	20	0	35	5.4	141	5.9	14.1	0.72	3.5
				0.0000	100	20	35	35	5.5	145	5.1	13.6	0.21	2.6
				0.0000	130	21	5	30		150	4.8	13.B	0.19	2.9
				0.0000	190	22	5	60		153	4.7	13.7	0.17	3.1
		6R	2177	0.1566	0	18	55	0	6.3	134	6	13.2	0.27	4.9
				0.0000	30	19	25	30	6.1	138	6.4	13.4	0.24	5.9
				0.0000	65	20	0	35	5.5	142	6.9	13.5	0.27	5.7
				0.0000	100	20	35	35	5.5	146	7.6	13.1	0.24	5.1
				0.0000	130	21	5	30	5.7	149	9.5	13	0.27	7
				0.0000	190	22	5	60	5.3	154	9.3	12.2	0.19	7.7
		RE	2288	0.1646	0	18	55	0	6.3	135	5.3	13.5	0.21	B. 7
				0.0000	30	19	25	30	6.2	139	5.9	13.3	0.19	3.9
				0.0000	65	20	0	35	6.0	143	6.8	13.1	0.17	3.9
				0.0000	100	20	35	35	5.9	147	6.9	13.2	0.26	4.3
				0.0000	130	21	5	30	5.7	451	7.9	12.8	0.22	7.9
				0.0000	190	22	5	60	5.5	155	8	12.8	0.21	5.4
		BL	1987	0.1429	0	18	55	0	6.0	136	6	13.3	0.23	5.1
				0.0000	30	19	25	-30	5.8	140	7	13.5	0.36	5.3
				0.0000	65	20	0	35	5.6	144	8	12.9	0.24	8.1
				0.0000	100	20	35	35	5.5	148	8.8	12.7	0.22	6.9
				0.0000	130	21	5	30	5.3	152	9.7	12.6	0.24	В
				0.0000	190	22	5	60	5.1	156	10.9	12.6	0.21	10.6

BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

		CO	CORF	CORF H20	TIME	TI	ME DE							
STATION	DATE	NO	vni	RETENT	(SUN)	SA	MPI F		nn	ΔΔ ΥΤΔΙ	NHA	ND3+N	DIP	ST (OH) A
	21776	10	(M))	(M)	100111	HR	MIN	(min)	(MG/	NO.	(nM-N)	(uM-N	(uM-P)	(uM-SI)
STIL.PD	9-NAY-85	BLI	ANK	0.0000	0	8	45	i 0	8.5	159	5.9	51.8	0.2	5.6
				0.0000	30	9	15	i 30	8.4	163	5.8	57.8	0.31	9.9
				0.0000	60	9	45	i 30	8.3	167	5.7	57.1	0.29	7.9
				0.0000	90	10	15	i 30	8.3	171	4.5	57.4	0.25	6.9
				0.0000	120	10	45	i 30	8.4	175	5.4	57.3	0.34	7
				0.0000	190	11	55	i 70	8.4	179	4.5	57.4	0.3	7.3
		6R	2 725	0.1960	0	8	45	i 0	8.2	160	5.4	55.2	0.31	16
				0.0000	30	9	15	i 30	8.1	164	6.4	56	0.39	8
				0.0000	60	9	45	i 30	7.8	168	7.3	49.5	0.41	8.7
				0.0000	90	10	15	i 30	7.4	172	7.2	57	0.49	12.6
				0.0000	120	10	45	i 30	6.9	176	9.7	56	0.55	10.6
				0.0000	190	11	55	i 70	6.0	180	12.8	55.5	1.14	14.4
		RE	2550	0.1835	0	8	45	5 0	8.5	161	4.7	57.1	0.26	7.9
				0.0000	30	9	15	i 30	8.3	165	4.6	56	0.24	9.9
				0.0000	60	9	45	5 30	8.0	169	5	56.3	0.26	9
				0.0000	90	10	15	5 30	7.6	173	5.1	55.5	0.27	12.1
				0.0000	120	10	45	5 30	7.5	177	5.5	55.4	0.27	11.3
				0.0000	190	11	55	i 70	7.0	181	5.5	55.3	0.29	14.6
		BL	2450	0.1763	0	9	45	5 O	B.6	162	4.8	56.6	0.22	8.9
				0.0000	30	9	15	5 30	8.4	166	4.9	55.7	0.27	8.2
				0.0000	60	9	45	5 30	B.2	170	4.9	55.8	0.25	10.B
				0.0000	90	10	15	5 30	8	174	5.8	55.1	0.34	10.9
				0.0000	120	10	45	5 30	7.4	178	5.8	55.2	0.28	10.4
				0.0000	190	11	55	5 70	7.3	182	5.5	54.5	0.38	11.7

BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CO CORE NO VOL (ML)	CORE H20 HEIGHT (M)	TIME (SUM)	T I Sf HR	ME OF MPLE MIN	DELTA (min)	DO (MG/	AA VIAL ND.	NH4 (11M-N)	NO3+N (um-n	DIP (um-P)	SI(OH)4 (uM-SI)
ST.LEO	25-JUNE	-8BLANK	0.0000	0	12	40	0	3.8	103	8.7	1.73	0.19	63
			0.0000	30	13	10	30	3.9	110	8.B	1.89	0.26	59.3
			0.0000	55	13	35	25	4.0	114	8.7	1.87	0.21	58.7
			0.0000	90	14	10	35	4.0	121	8.7	1.94	0.25	57.6
			0.0000	115	14	- 35	25	4.1	125	8.B	1.81	0.37	57
			0.0000	155	15	15	40	4.2	129	9	1.91	0.23	57.6
		RE 2725	0.1960	0	12	4(0	3.6	104	9.3	2.22	0.25	61.8
			0.0000	30	13	10	30	3.2	111	9.6	2.68	0.27	62.5
			0.0000	55	13	35	25	2.8	115	9.6	2.45	0.25	63
			0.0000	90	14	1(35	2.5	122	9.6	2.64	0.39	63.7
			0.0000	115	14	35	5 25	2.2	126	10.6	2.88	0.61	65.2
			0.0000	155	15	15	i 40	1.9	130	10.3	3.42	0.46	67.7
		GR 2850	0.2050	0	12	4() 0	4	105	9.1	2.16	0.19	60.6
			0.0000	30	13	1() 30	3.6	112	9.4	2.52	0.32	61.8
			0.0000	55	13	3	i 25	3.3	116	9.4	2.7	0.35	62.8
			0.0000	90	14	10) 35	3.0	123	9.5	2.84	0.33	63.3
			0.0000	115	14	35	i 25	2.8	127	9.8	3.3	0.35	65.7
			0.0000	155	15	15	i 40	2.5	131	9.8	3.57	0.32	65.4
		BL 2650	0.1906	0	12	- 4(> 0	3.6	106	9.5	2.23	0.47	63.2
			0.0000	30	13	. 10) 30	3.2	113	9.2	2.35	0.32	63.1
			0.0000	55	13	3	5 25	3.0	117	9.3	2.55	0.35	63.6
			0.0000	90	14	10) 35	2.7	124	9.4	2.89	0.37	63.7
			0.0000	115	14	3	5 25	2.4	128	10.6	2.92	0.83	66.2
			0.0000	155	15	1	5 40	2.1	132	10.6	3.2B	0.39	67

CO CORE CORE H20 TIME TIME OF HEIGHT (SUM) STATION DATE NO VOL SAMPLE DELTA DO AA VIAL NH4 NO3+N DIP SI (OK) 4 (ML) (M) HR MIN (min) (MG/ NO. (uM-N) (uM-N (uM-P) (uM-SI) ----0.0000 55 0 4.2 85 1.5 0.99 92 BU. VISTA25-JUNE-BBLANK 0 10 1.41 0.0000 25 30 4.3 90 1.4 0.3 1.72 94 30 11 0.0000 60 11 55 30 4.4 95 1.7 0.31 1.85 89 0.0000 90 12 25 30 4.4 99 1.2 0.73 89 1.45 RE 2650 0.1906 55 0 4.6 1.1 0.7 93 . 0 10 86 1.61 0.0000 30 11 25 30 4.5 91 2 0.32 2.09 92 0.0000 60 11 55 30 4.4 96 1.9 0.53 1.59 93 0.0000 90 12 25 30 4.4 100 2.4 0.49 1.62 92 0.0000 30 4.3 4.3 0.46 55 2.39 94 120 12 107 0.0000 175 13 50 55 4.1 118 4.4 1.11 1.73 86 GR 2710 0.1950 0 10 55 0 4.5 87 1 0.23 1.95 91 30 4.4 0.0000 25 92 1.3 0.45 30 - 11 1.76 96 0.0000 60 11 55 30 4.3 97 1.7 0.35 92 1.6 0.0000 25 30 4.3 90 12 101 2.5 0.7 1.71 94 0.0000 120 12 55 30 4.1 2.9 0.57 90 108 1.7 0.0000 55 3.9 175 13 50 4.5 0.49 90 119 1.71 0.1942 10 55 0 4.3 1.9 0.58 96 BL 2700 0 88 1.67 0.0000 30 11 25 30 4.1 93 2.8 0.61 1.71 94 0.0000 30 4 3.9 0.65 60 11 55 98 2.1 94 0.0000 90 12 25 30 3.8 102 4.8 0.49 1.92 95 0.0000 97 120 12 55 30 3.7 109 5.9 0.54 1.82 0.0000 175 13 50 55 3.4 120 7.4 0.72 2.02 93

BIONONITORING PROGRAM: SEDIMENT DXYSEN AND NUTRIENT EXCHANGES (SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CO No	CORE Vol (ML)	CORE H2O HEIGHT (M)	TIME (SUM)	T) S (HR	IME OF NMPLE MIN	DELTA (min)	DO (MG/	AA VIAL ND.	NH4 (uM-N)	NO3+N (uM-N	DIP (uM-P)	SI (OH) 4 (uM-SI)
HORN PT.2	6-JUNE	-88L/	ANK	0.0000	0		40	0	5.6	161	3.2	2.04	0.41	52.7
				0.0000	30	10	10	30	5.6	165	3,8	1.74	0.4	53
				0.0000	50	10	30	20	5.6	169	3.2	1.72	0.46	51.5
				0.0000	70	10	50	20	5.6	173	3.2	2.16	0.32	51.6
				0.0000	90	11	10	20	5.7	177	3.3	1.92	0.36	52.8
				0.0000	130	11	50	40	5.7	181	3.2	1.71	0.32	51.2
		RE	2875	0.2068	0	9	40	0	4.9	162	3.8	2.29	0.39	57
				0.0000	30	10	10	30	4.6	166	4.8	2.55	0.44	58.1
				0.0000	50	10	30	20	4.3	170	5	3.3	0.4	62.2
				0.0000	70	10	50	20	4.1	174	5.2	3.12	0.47	61
				0.0000	90	11	10	20	3.9	178	5.8	3.3	0.39	61.4
				0.0000	130	11	50	40	3.4	182	6.6	3.83	0.66	64.3
		GR	3035	0.2183	0	9	40	0	5.2	163	3.8	2.06	0.61	57
				0.0000	30	10	10	30	4.7	167	4.6	2.4	0.47	57.5
				0.0000	50	10	30	20	4.5	171	4.6	2.46	0.53	58.9
				0.0000	70	10	50	20	4.2	175	5.2	2.79	0.6	59.4
				9.0000	90	11	10	20	3.9	179	5.B	3.38	0.65	60.8
				0.0000	130	11	50	40	3.3	183	6.6	3.85	0.61	62.3
		BL	2940	0.2115	0	9	40	0	4.9	164	5.1	2.15	0.54	59.5
				0.000	30	10	10	30	4.4	168	5	2.7	0.32	59.4
				0.0000	50	10	30	20	4.2	172	5.6	2.56	0.31	59.6
				0.0000	70	10	50	20	3.9	176	5.9	3	0.41	62.7
				0.0000	90	11	10	20	3.7	180	6.1	3.11	0.44	62.2
				0.0000	130	11	50	40	3.2	184	7.4	3.29	0.42	64.5

 $\overline{}$

 \int_{Ω}

_

EIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

	DATE	00	CORE	CORE H2D	TIME	TI	ME OF	-	80			N83.N		61 (64) A
SERIION	URIE	NU	(ML)	HE16H1 (M)	(200)	HR	MPLE MIN	UELIA (min)	UU (MG/	NO.	NH4 (uM-N)	NUS+N (uH-N	UIP (uM-P)	(uM-SI)
RAG.PT	24-JUNE	-88L/	ANK	0.0000	0	 11	40	0	0.2	3	18.8	0.45	1.49	41.9
				0.0000	30	12	10	30	0.4	7	18.4	0.25	1.52	42.2
				0.0000	60	12	40	30	0.6	11	18.6	0.32	1.48	42
				0.0000	100	13	20	40	0.6	15	19	0.46	1.66	42.6
				0.0000	160	14	20	60	0.8	19	18.4	0.51	1.38	43.8
				0.0000	285	16	25	125	1.3	33	17.5	0.26	1.11	41.B
		RE	3215	0.2313	0	11	40	0	0.3	4	19.6	0.32	1.73	42.8
				0.0000	30	12	10	30	0.3	8	20.5	0.14	1.71	44.2
				0.0000	60	12	40	30	0.3	12	21.4	0.17	1.88	45.5
				0.0000	100	13	20	40	0.3	16	21.9	0.25	1.99	46.3
				0.0000	160	14	20	60	0.2	20	22.9	0.25	2.05	47.1
				0.0000	285	16	25	125	0.1	34	25.1	0.52	2.25	50.8
		GR	3270	0.2353	0	11	40	0	0.3	5	20.1	0.17	1.72	43.5
				0.0000	30	12	10	30	0.4	9	21.1	0.25	1.83	44.6
				0.0000	60	12	40	30	0.4	13	22.2	0.16	2.02	45.2
				0.0000	100	13	20	40	0.4	17	23.1	0.26	2.32	48.6
				0.0000	160	- 14	20	60	0.3	21	24.7	0.58	2.23	48.3
				0.0000	285	16	25	125	0.2	35	27.7	0.22	2.55	50.9
		BL	3255	0.2342	0	11	40	0	0.1	6	20.4	0.33	1.71	43.8
				0.0000	- 30	12	10	30	0.2	10	21.7	0.28	1.95	45.5
				0.0000	60	12	40	30	0.2	14	22.9	0.26	1.91	45.6
				0.0000	100	13	20	40	0.2	18	24.2	0.35	2.04	47.3
				0.0000	160	14	20	60	0.2	22	25.8	0.11	2.15	48.1
				0.0000	285	16	25	125	۸۸	71	20 1	0.2	2 44	50 0

BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CO No	CORE VOL	CORE H20 HEIGHT	TIME (SUM)	T: Si	IME OF AMPLE	DELTA	DO	AA VIAL	NH4 (M=N)	N03+N		SI (OH) 4
			(nL)	\n/		nn 	nin 	(#1117 	100/	NU.	(un=n/	(un-n	(un=r)	
MD.PT	4-JUNE-	-85BL/	ANK	0.0000	0	15	35	0	5.3	25	6.7	31.2	1.46	41.5
				0.0000	30	16	5	30	5.5	29	4.9	31.1	1.38	39.1
				0.0000	65	16	40	35	6.0	37	5.3	30.6	1.39	39.6
				0.0000	95	17	10	30	6.2	41	5.6	30.6	1.61	42.9
				0.0000	125	17	40	30		45	5.1	30.7	1.47	39.2
				0.0000	155	18	10	30	5	49	5	31.1	1.32	38.4
				0.0000	235	19	30	80	5.2	55	5.1	31.6	1.37	40.9
		RE	2550	0.1835	0	15	35	0	4.3	26	5.3	30.8	1.38	42.1
				0.0000	30	16	5	30	4.3	30	5.3	31	1.49	43.6
				0.0000	65	16	40	35	4.3	28	5.5	30.8	1.43	42.1
				0.0000	95	17	10	30	4.3	42	5.7	29	1.35	48.5
				0.0000	125	17	40	30	4.3	46	6.1	31.2	1.46	42.7
				0.0000	155	18	10	30	4.2	50	5.9	30.4	1.49	44.9
				0.0000	235	19	30	80	4.2	56	6.3	30.6	1.57	45.7
		GR	2780	0.2000	0	15	35	0	4.5	27	4.9	30.6	1.27	43
				0.0000	30	16	5	30	4.4	31	5.5	30.7	1.43	44,4
				0.0000	65	16	40	35	4.4	39	5.4	30.8	1.43	44.2
				0.0000	95	17	10	30	4.3	43	5.3	28.1	1.3	42.1
				0.0000	125	17	40	30	4.3	47	5.6	30.7	1.5	43.8
				0.0000	155	18	10	30	4.3	51	6.1	30.5	1.37	45.4
				0.0000	235	19	30	BO	4,1	57	5.9	30.2	1.51	46.2
		BL	2790	0.2007	0	15	35	0	4.2	28	5.1	30.7	1.42	44.1
				0.0000	30	16	5	30	4.2	32	5.3	30.7	1.54	44.8
				0.0000	65	16	40	35	4.1	40	5.6	30.7	1.5	42.2
				0.0000	95	17	10	30	4.0	44	6	30.7	1.61	40.7
				0.0000	125	17	40	30	4.0	48	6.1	30.7	1.54	43.6
				0.0000	155	18	10	30	3.9	52	6.2	30.4	1.59	44.2
				0.0000	235	19	30	80	3.8	58	6.4	30.7	1.61	45.5

BIOMONITORING FROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

		CO	CORE	CORE H20	TIME	11	ME OF							
STATION	DATE	NO	VOL	HEIGHT	(SUK)	SA	MPLE	DELTA	DO	AA VIAL	NH4	ND3+N	DIP	SI (OH)
			(ML)	(M)		HR	MIN	(min)	(MG/	NO.	(uM-N)	(uM-N	(uM-P)	(uM-SI)
PT.NO.PT	24-JUNE	-88L/	ANK	0.0000	0	20	25	0	1.1	59	12.7	1.13	1.48	39.6
				0.0000	30	20	55	30	1.9	63	12.7	1.21	1.41	40.1
				0.0000	76	21	41	46	2.1	67	13.1	1.86	1.38	40
				0.0000	120	22	25	44	2.5	71	13.2	1	1.41	39.8
				0.0000	165	23	10	45	2.7	75	13.8	1.58	1.43	39.7
				0.0000	225	24	10	60	2.9	79	13.7	1.61	1.33	40.9
		RE	2900	0.2086	0	20	25	0	2.1	60	13.4	1.14	0.47	42.6
				0.0000	30	20	55	30	2.0	64	14.5	0.68	0.54	43.8
				0.0000	75	21	40	45	1.9	68	16.5	0.78	0.8	53.2
				0.0000	120	22	25	45	1.8	72	18.3	0.6	0.87	48.8
				0.0000	165	23	10	45	1.6	76	19.9	0.95	1.05	58.4
				0.0000	225	24	10	60	1.3	80	21.5	0.84	1.13	63.7
		GR	2890	0.2079	0	20	25	0	2.6	61	12.9	0.55	0.47	42.6
				0.0000	30	20	55	30	2.3	65	13.7	0.94	0.57	44
				0.0000	75	21	40	-45	2.3	69	15.7	0.76	0.64	53.1
				0.0000	120	22	25	45	2.3	73	16.7	1.62	0.93	48.B
				0.0000	165	23	10	45	2.2	77	18.2	0.96	0.92	51.8
				0.0000	225	24	10	60	1.9	B1	19.8	0.77	0.96	57.6
		BL	3130	0.2252	0	20	25	0	2.2	62	12.6	0.54	0.41	41.2
				0.0000	30	20	55	30	2.3	66	13.2	0.58	0.47	43
				0.0000	75	21	40	45	2.2	70	14.6	1.13	0.59	48.4
				0.0000	120	22	25	45	2.1	74	16.6	0.83	0.64	49.5
				0.0000	165	23	10	45	2.0	78	16.6	0.74	0.65	53.2
				0.0000	225	24	10	60	1.9	82	18.3	0.71	ΛR	57 1

-

-

BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	co No	CDRE VOL	CORE HEIR	H20 Bht	TIME (SUM)	:) Н	TIM SAM R	E OF Ple Min	DEL (mi	,TA .n)	D0 (M6/	AA	VIAL NO.	NH+ (uM-)	4 1 N} 	ND3+N (um-N	DIP (uM-P)	SI (OH (uM-9	() 4 (1)
 R− ċ4	25-JUNE		ANK	0. 0. 0. 0.	0000 0000 0000 0000	3	0 50 50 50 60 60	18 18 19 19 20		5 35 5 45 45	0 30 30 40 60	0.4 0.7 0.8 0.9		135 139 143 147	27 27 27 2 2 1 2 2	24 2.3 2.3 2.3 3.4	0.9 0.94 1.24 0.89 1.27 0.84	0.42 0.59 0.61 0.51 0.92 0.42	4 45. 45. 48. 48. 48.	5996
		F	RE 278	0 0) - 2 0 0 10 10	20 0 30 60 100 160	21 18 18 19 19 20		45 5 35 5 45 45 45	60 (3 3 4 6) 1.2 0 0.1 0 0. 0 0. 0 0. 50 0.	B B B 7 .6	13 14 14 1 1 1	6 2 10 2 14 48 52 56	22.5 22.7 23.1 23.1 25. 27. 27.	5 0.89 7 0.89 8 1.19 2 1.49 3 0.76 29 0.55	0.6 0.5 0.6 1.(1.)	6 50 9 48 6 50 17 51 14 5 27 6	.7 1.7 2.7 8.5 1.1
			6R 24	70	0.17 0.00 0.00 0.00 0.00	77 000 000 000 000	0 30 60 100 160 220	18 19 19 19 2 2	3 7 7 0	5 35 5 45 45	i	0 0 30 0 30 0 40 0 60 0	.B).7).7).6 0.5 ().4	1	.37 141 145 149 153 157	21 26 28 31 33	.6 1.26 24 0.8 .3 1.20 1.5 0.9 1.5 0. 3.8 0.7	5 0. 8 0. 8 1. 9 5 7 2	63 92 42 1.7 .53 3	7. j0. j5. 58 66 69
			BL 2	2645	0.0 0.1 0.0 0.0 0.0	900 9000 9000 9000 9000	0 30 60 10 16 22	1) 1) 0 0	.B 18 19 19 20 21	; 3] 4	55555	0 30 30 40 60 50	0.8 0.9 0.9 0.7 0.7	7 8 7	138 142 146 150 154 158	2: 2 2 2 2	2.2 1.0 3.6 1.1 25.2 0. 26.5 0. 28.1 0. 28.8 0.	02 0 26 1 65 62 39 .49	1.55 1.04 1.3 1.7 2.22 2.67	51 54 51 6

BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

		CO CO	E CORE H20	TIME	TI	ME OF							
STATION	DATE	NO VO	. HEIGHT	(SUM)	SA	MPLE	DELTA	DO	AA VIAL	NH4	N03+N	DIP	SI (OH) 4
		· · (M	.) (M)		HR	MIN	(min)	(MG/	NO.	(uM-N)	(uff-N	(uM-P)	(uM-SI)
R-78	27-JUNE	-8BLANK	0.0000	0	13	55	0	1.1	209	22	0.89	0.41	48.4
			0.0000	40	14	35	40	1.2	213	21.9	1.01	0.5	47.4
			0.0000	100	15	35	60	1.3	217	21.8	1.21	0.59	47.5
			0.0000	160	16	35	60	1.5	221	22.2	0.87	0.49	47.4
			0.0000	220	17	35	60	1.6	225	21.7	2.06	0.49	48.1
			0.0000	280	18	35	60	1.7	229	22.4	0.84	0.54	48
		RE 20	50 0.1475	0	13	55	0	1.2	210	24.3	0.89	0.65	51.4
			0.0000	40	14	35	40	1.4	214	25.3	0.83	0.88	53.8
			0.0000	100	15	35	60	1.5	218	26.3	0.57	0.76	58.8
			0.0000	160	16	35	60	1.6	222	28.1	0.85	0.85	60.B
			0.0000	220	17	35	60	1.6	226	28.7	1.45	0.92	63.6
			0.0000	2B0	18	35	60	1.6	230	29.5	1.53	0.93	67.2
		6R 25	20 0.1B13	0	13	55	0	0.9	211	24.1	0.94	0.62	50
			0.0000	40	14	35	40	0.9	215	25.4	0.7B	0.73	52.4
			0.0000	100	15	35	60	0.8	219	26.7	0.62	0.76	54.7
			0.0000	160	16	35	60	0.7	223	28.4	1	0.9	57.6
			0.0000	220	17	35	60	0.6	227	29.6	1.36	0.95	59.9
			0.0000	280	18	35	60	0.6	231	30.4	0.56	0.97	62.2
		BL 25	00 0.1799	0	13	55	0	0.4	212	24	0.78	0.51	49.1
			0.0000	40	14	35	40	0.4	216	24.5	0.54	0.55	50.5
			0.0000	100	15	35	- 60	0.4	220	24	0.69	0.59	51.1
			0.0000	160	16	- 35	60	0.4	224	25.6	1.53	0.63	53.9
			0.0000	220	17	35	60	0.4	228	25.9	1.04	0.59	55
			0.0000	280	18	- 35	60	0.3	232	26.3	1.4	0.73	56.2

 \sim \sim ------ \sim

 $\overline{}$

 \sim

BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

		rn	POPE	CUDE 1130	TINC	T								
CTATION	DATE	นก มก	UDI	UCICUT	110L 70HWA	e/	NIE VE		50	AA 111 AA	NUA	NULTIN	סזה	et (04) #
SINITUN	DHIC		(ML)	(M)	(50n)	HR	MIN	(min)	(MG/	ND.	un-N)	uM-N	(uH-P)	(uM-SI)
STIL.PD	26-JUNE	-88L)	 Ank	0.0000	 0	18	20	0	5.6	187	5.1	38.4	0.51	38.8
				0.0000	30	18	50	30	5.6	191	4.7	38.2	0.53	34.3
				0.0000	60	19	20	30	5.7	195	4.9	38.6	0.57	39.3
				0.0000	100	20	0	40	5.8	199	5	38.4	0.55	37.8
				0.0000	155	20	55	55	5.9	203	. 4.9	38.3	0.51	36.7
											_			
		RE	2975	0.2140	0	18	20	0	5.3	188	5	38.4	0.52	40.2
				0.0000	20	18	50	30	5.2	192	5	3B.3	0.56	38.8
				0.0000	60	19	20	30	5.1	196	5	3B	0.54	39.7
				0.0000	100	20	0	40	4.9	200	5.1	38	0.56	41.7
				0.0000	155	20	55	55	4.7	204	5.8	38.4	0.59	39.1
		6R	2900	0.2086	0	18	20	0	5.0	189	5.1	38.3	0.53	40.3
				0.0000	30	18	50	30	5	193	5.6	38	0.55	39.2
				0.0000	60	19	20	30	4.B	197	6	38	0.57	41.3
				0.0000	100	20	0	40	4.6	201	6.8	38.2	0.59	41.9
				0.0000	155	20	55	55	4.4	205	6.5	38.i	0.55	41.2
r		RI	3100	0.2230	Ô	18	20	0	4.9	190	5	78.5	0.51	40.2
,			••••	0.0000	30	IR	50	30	4 9	194	A R	38 4	0.53	30.2
				0.0000	60	19	20	30	4.8	199	4.9	38.6	0.97	39.4
				0.0000	100	70	0	40	L R	202	4 R	78 7	0.55	
				0.0000	155	20	55	55	4.6	202	4.9	38.4	0.59	39.2
				*****		• •						VUIT		0112
ata Table No. 5-1.

ug-atN/m2/h g02/m2/d ug-atN/m2/h ug-atP/m2/h ug-atSi/m2/h 02 FLX NH4 FLX NO3 FLX PO4 FLX CORE DEPTH r2 flux m r2 flux n r2 flux m r2 flux m r2 flux STATION DATE NO (m) fi. ND BU.VISTA 270884 1 0.067 ND 0.0 0.0392 0.99 157.6 0.0027 0.62 10.9 0.0026 0.92 10.5 0.0784 0.97 315.2 ND 0.0 0.0361 0.99 158.1 0.0007 0.04 3.1 0.0021 0.90 9.2 0.0676 0.98 296.1 2 0.073 ND 0.0 0.0202 0.99 90.9 0.0042 0.71 18.9 0.0020 0.86 9.0 0.0741 0.99 333.5 KD ND 3 0.075 1 0.072 ND ND 0.0 0.0319 0.75 137.8 0.0021 0.13 9.1 0.0022 0.83 9.5 0.0733 0.85 316.7 0.0 0.0574 0.90 175.6 0.0052 0.34 15.9 0.0027 0.57 8.3 0.1089 0.95 333.2 0.0 0.0271 0.95 182.8 0.0021 0.28 12.8 0.0028 0.76 15.8 0.0771 0.96 482.8 S1.LEO 270884 1 0.051 ND ND ND 2 0.100 ĦD ND ND 3 0.070 0.0 0.0206 0.87 86.5 0.0027 0.12 -11.3 0.0026 0.50 10.9 0.1029 0.97 432.2 T 0.074 ND ND 0.0 0.0318 0.05 141.2 0.0013 0.01 5.8 0.0024 0.02 10.7 0.0929 0.16 412.5 HORN.PI 290884 1 0.082 -0.0078 0.98 -0.9 -0.0588 0.72 -289.3 0.0011 0.98 5.4 -0.0024 0.81 -11.8 0.0526 0.62 258.8 2 0.059 ND ND 0.0 3 0.061 - 0.0022 0.99 - 0.2 - 0.0675 0.86 - 247.1 0.0029 0.88 10.6 - 0.0038 0.84 - 13.9 0.1024 0.91 374.8 -1.5 -0.0632 0.79 -269.2 0.0021 0.71 T 0.071 -0.0149 0.81 8.9 -0.0031 0.78 -13.2 0.0783 0.62 333.6 WIND.HIL 290884 1 0.090 -0.0042 0.81 -0.5 0.0096 0.50 51.8 0.0062 0.66 33.5 -0.0012 0.77 -6.5 0.0235 0.47 126.9 2 0.077 -0.0053 0.97 -0.6 0.0344 0.98 158.9 0.0027 0.49 12.5 -0.0014 0.92 -6.5 0.0500 0.90 231.0

SI FLX

IOHONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES (SONE) COMPONENT SONEFLX (Summary of sediment water exchanges expressed in units of mass/m2/time.

3 0.047 ND ND 0.0 T 0.079 -0.0047 0.75 -0.5 0.0226 0.25 107.1 0.0044 0.48 20.9 -0.0013 0.38 -6.2 0.0370 0.68 175.4 RA6.P1 280884 1 0.067 ND ND 0.0 2 0.058 -0.0087 0.97 -0.9 0.1770 0.93 722.2 0.0021 0.72 8.6 0.0146 0.96 59.6 0.1196 0.93 498.0 3 0.061 -0.0137 0.99 -1.2 0.1702 0.90 622.9 0.0021 0.75 7.7 0.0239 0.93 B7.5 0.1711 0.99 626.2 1 0.058 -0.0100 0.79 - -1.0 0.1694 0.91 691.2 0.0019 0.62 7.8 0.0211 0.85 86.1 0.1457 0.87 594.5 ND.FT 280884 1 0.069 -0.0040 0.96 -0.4 0.0035 0.07 14.4 -0.0118 0.85 -48.6 -0.0077 0.95 -31.7 0.1292 0.99 531.8 2 0.055 0.0084 0.97 -0.7 ND ND 0.0 -0.0233 0.98 -81.9 -0.0087 0.99 -30.6 0.0807 0.98 283.7 3 0.077 -0.0074 0.98 -0.8 -0.0026 0.02 -12.3 ND ND 0.0 -0.0044 0.96 -20.8 0.0833 0.98 392.8 T 0.069 -0.0081 0.49 -0.8 0.0011 .00 4.6 -0.0173 0.76 -71.5 -0.0068 0.35 -28.2 0.0982 0.92 406.5

No. 5-2.

g02/m2/d ug-atN/m2/h ug-atN/m2/h ug-atP/m2/h ug-alSi/m2/h ------NO3 FLX PD4 FLX SI FLX 02 FLX NH4 FLX CORE DEPTH 12 flux - STATION DATE NO (m) r2 flux n r2 flux r2 flux r2 flux ਜ **\$**1 8 2.7 -0.0023 0.90 -8.8 0.0992 0.96 380.9 -0.1 -0.0312 0.82 -119.8 0.0007 0.13 PT.NO.PT 280884 1 0.064 -0.0009 0.43 2 0.070 -0.0023 0.90 -0.2 -0.0362 0.94 -152.0 0.0013 0.37 5.5 -0.0020 0.76 -8.4 0.0927 0.99 389.3 -0.1 -0.0625 0.98 -300.0 0.0007 0.18 3.4 -0.0032 0.84 -15.4 0.0884 0.99 424.3 3 0.080 -0.0013 0.52 3.9 -0.0025 0.79 -10.8 0.0934 0.95 403.5 1 0.072 -0.0015 0.10 -0.2 -0.0433 0.75 -187.1 0.0009 0.19 290884 1 0.064 NÐ ND 0.0 ND ND 0.0 ND ND 0.0 ND ND 0.0 ND ND 0.0 R-64 2 0.071 -0.0117 0.95 -1.2 -0.1050 0.80 -447.3 -0.0021 0.70 -8.9 -0.0090 0.97 -38.3 0.1678 0.99 714.8 3 0.068 -0.0109 0.99 -1.1 -0.0707 0.71 -288.5 -0.0013 0.95 -5.3 -0.0042 0.97 -17.1 0.1469 0.99 599.4 1 0.068 -0.0113 0.92 -1.1 -0.0878 0.70 -358.2 -0.0017 0.66 -6.9 -0.0066 0.86 -26.9 0.1571 0.99 641.0 TOM.PT 300884 1 0.075 -0.0099 0.86 -1.1 -0.0924 0.85 -415.8 -0.0019 0.84 -8.6 -0.0069 0.88 -31.1 0.0450 0.92 202.5 2 0.071 ND ND 0.0 3 0.071 -0.0092 0.99 -0.9 -0.1049 0.98 -446.9 -0.0068 0.08 -29.0 -0.0069 0.80 -29.4 0.0648 0.98 276.0 1 0.073 -0.0010 0.85 -0.1 -0.0992 0.89 -434.5 -0.0044 0.07 -19.3 -0.0069 0.81 -30.2 0.0055 0.83 24.1 STIL.PD 300884 1 0.079 -0.0074 0.85 -94.3 -0.0201 0.92 -95.3 -0.0020 0.87 -9.5 0.0516 0.95 244.6 -0.8 -0.0199 0.86 2 0.055 -0.0148 0.91 -1.4 -0.0299 0.96 -116.6 -0.1273 0.67 -496.5 -0.0013 0.69 -5.1 0.0947 0.99 369.3 3 0.065 -0.0151 0.95 -1.4 -0.0694 0.99 -270.7 -0.0236 0.94 -92.0 -0.0010 0.67 -3.9 0.0497 0.94 193.B -1.2 -0.0397 0.72 -164.4 -0.0570 0.32 -236.0 -0.0014 0.60 -5.8 0.0653 0.75 270.3 1 0.069 -0.0124 0.80 BU.VISTA 310884 1 0.111 -0.0148 0.99 -2.4 ND ND 0.0 ND ND 0.0 ND ND 0.0 ND ND 0.0 2 0.105 -0.0171 0.99 ND ND 0.0 -2.6 ND ND 0.0 ND ND 0.0 ND ND 0.0 3. 0.115 -0.0087 0.99 -1.4 ND HD 0.0 ND ND 0.0 HD ND 0.0 ND ND 0.0 1 0.110 -0.0135 0.80 ND -2.1 ND ND 0.0 ND ND 0.0 ND ND 0.0 ND 0.0 ND ST.LE0 310884 1 0.077 -0.0055 0.99 ND ND -0.6 ND ND 0.0 NÐ 0.0 ND ND 0.0 0.0 2 0.062 -0.0030 0.94 -0.3 ND ND 0.0 ND ΗÐ 0.0 ND ND 0.0 ND ND 0.0 3 0.064 ND ND ND ND 0.0 ND ND 0.0 ND ND 0.0 ND ND 0.0 0.0 1 0.069 0.5900 0.59 58.6 NÐ ND 0.0 ND ND 0.0 ND ND 0.0 ND ND 0.0

BIOHONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES (SOME) COMPONENT BONEFLX (Summary of sodiment water exchanges expressed in units of wass/m2/time.

LONG-TERM BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGE(SONE) SUMMARY SONEFLX(Summary of sediment-water exchanges expressed in units of mass/m2/time.

					g02/ æ 2	/ d		ug-atl	N/m2/I	1 I	ug-atN,	/m2/h		ug-at i	°/m2	/h	ug-at!	Si/a2/t
			CORE		02 FLX			NH4 FI	LX		NO3 FL)	(PD4 FI	_X		SI FL	X
STATION	DATE	NO	(ca)	8	r2	flux	A	r2	flux	8	r2	flux		r2	flu	A	r2	flux
ST.LED	170CT84	R	12.9	-0.00426	0.99	-0.8	0.00187	0.09	14	0.00760	0.94	59	0.00044	0.62	3	0.01909	0.9	148
		¥	15.4	-0.00323	0.99	-0.7	0.00436	0.89	40	0.00366	0.87	34	0.00033	0.67	3	0.01529	0.93	141
		B	14.1	-0.00362	0.99	-0.7	0.00428	0.93	36	0.00435	0.96	37	0.00072	0.76	6	0.01548	0.82	131
BU.VISTA	170CT84	R	14.0	-0.00473	0.99	-1.0	0.00480	0.47	40	0.00309	0.94	26	0.00029	0.25	2	0.01186	0.15	100
-		W	13.7	-0.00473	0.99	-0.9	0.00331	0.88	27	0.00497	0.72	41	0.0000B	0.24	1	0.02564	0.B7	211
		B	13.7	-0.00193	0.9	-0.4	0.00799	0.78	66	0.00397	0.86	33	0.00069	0.79	6	0.003389	0.02	28
KORN.PT	150CT84	R	14.9	-0.00467	0.99	-1.0	0.03114	0.94	279	0.00168	0.33	15	0.00065	0.91	6	-0.032	0.67	-286
		W	14.0	-0.00489	0.99	-1.0	0.00976	0.37	82	0.00240	0.19	20	0.00066	0.68	6	-0.01736	0.05	-146
10 - M		B	13.3	-0.00692	0.87	-1.3	0.01789	0.90	143	0.00720	0.84	57 ,	0.00147	0.93	12	-0.002669	0.005	-21
WIND.HIL	. 150CT84	R	10.9	-0.00713	0.99	-1.1	0.05166	0.96	338	-0.00073	0.86	-5	-0.00027	0.18	-2	0.04333	0.69	283
.1 100		W	10.5	-0.00894	0.99	-1.4	0.04742	0.98	299	-0.00337	0.64	-21	0.00097	0.7	6	0.02171	0.09	137
		B	10.7	-0.00793	0.97	-1.2	0.05914	0.94	380	-0.00720	0.74	-46	0.00032	0.17	2	0.08885	0.98	571
RAG.PT	1800184	R	15.1	-0.00372	0.99	-0.8	0.02441	0.98	221	0.00241	0.96	22	-0.00014	0.15	-1	0.02422	0.95	219
		¥	16.4	-0.00372	0.99	-0.9	0.01959	0 .94	193	0.00240	0.67	24	0.00009	0.005	1	0.02446	0.9B	241
ретт.,		B	16.5	-0.00337	0.99	-0.8	0.01834	0.99	182	0.00360	0.84	36	0.00006	0.01	i	0.02172	0.99	215
MD.PT	180CT84	R	18.3	-0.00278	0.81	-0.7	-0.00162	0.06	-18	0.00190	0.33	21	0.00007	0.02	1	-0,032	0.75	-352
		W	17.9	-0.00290	0.96	-0.7	0.00019	.00	2	0.00324	0.71	35	0.00041	0.13	4	0.01714	0.76	184
		B	18.2	-0.00230	0.98	-0.6	0.00019	.00	2	0.00171	0.5	19	0.00026	0.29	3	0.007	0.32	76
PT.NO.PT	F 170CT84	R	17.3	-0.00360	0.99	-0.9	0.00616	0.92	64	0.00272	0.67	2 B	0.0000B	0.06	1	0.02281	0.99	236
		8	13.7	-0.00376	Ú.99	-0.7	0.01497	0.98	123	0.00400	0.9	33	0.00001	0.002	0	0.02737	0.99	224
		R	15.9	-0.00404	0.99	-0.9	0.01242	0.99	118	0.00304	0.8/	29	0.00015	0.6/	2	0.02975	0.99	284
R-64	160CT84	R	13.3	-0.00576	0.99	-1.1	0.01830	0.99	146	-0.00080	0.53	-6	-0.00029	0.24	-2	0.0453	0.97	361
		*	12.9	-0.00451	0.99	-0.8	0.02090	0.98	162	0.00030	0.06	2	-0.0003B	0.26	-3	0.04998	0.92	388
		B	12.0	-0.00360	0.97	-0.5	0.01563	0.92	: 113	0.00108	0.58	8	0.00015	0.17	1	0.03668	0.99	408
R-78	160CTB4	R	13.1	-0.00148	0.97	-0.3	0.0003B	0.06	3	0.00844	0.71	66	0.00002	0.002	0	0.06877	0.84	540
		Ř	13.4	-0.00156	0.93	-0.3	0.00164	0.01	13	0.00667	0.94	54	0.00026	0.66	2	0.04505	0.72	362
		B	13.0	-0.00104	0.95	-0.2	0.00509	0.09	40	0.00766	0.99	60	-0.00001	0.009	0	0.02923	· 0.84	228
STIL.PD	160CTB4	R	14.6	-0.00360	0.98	-0.8	0.012B3	0.99	112	-0.00148	0.31	-13	0.00027	0.17	2	-0.001406	0.004	-12
		₩ 	14.7	-0.00291	0.99	-0.6	0.01223	0.99	108	-0.00154	0.18	-14	0.00020	0.35	2	-0.01606	0.57	2 -142
		B	15.0	-0.002//	0.73	-0.6	0.00902	V.80	9 81	-0.00048	0.096	- 4	-0.00012	0.83	-1	0.001/21	0.06	b 16

LONG-TERM BIONONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE(SONE) SUMMARY SONEFLX(Summary of sediment-water exchanges expressed in units of mass/m2/time.

				g02/m2	/ d		ug-ati	N/m2/	h	ug-atN/	/m2/h		ug-atl	P /a 2/	'n	ug-at!	5i/m2/H
		CORE		02 FLX			NH4 F	LX		NO3 FL)	(P04 F1	X		SI FL	X
STATIO	N DATE	NO (cm)	ġ.	r2	flux	fi	r2	flux	A	r2	flux	\$	r2	flx	Rà	r2	flux
ST.LE	0 6MAY85	6 19.76	-0.008592	0.99	-2.44	0.01151	0.96	137	0.00074	0.39	9	0.0003B	0.99	5	0.06245	0.99	741
		R 19.05	-0.00743	0.97	-2.03	0.01128	Û.78	129	-0.00012	0.04	-1	0.00041	0.98	5	0.04915	0.85	562
		B 18.61	-0.009651	0.99	-2.58	0.00932	0.99	104	-0.00035	0.3	-4	0.00011	0.28	1	0.06423	0.99	718
BU.VIS	TA 6MAY85	6 21.72	-0.00568	0.99	-1.77	0.00781	0.68	102	0.00195	0.63	25	0.00157	0.82	21	0.00831	0.63	108
		R 18.04	-0.00544	0.96	-1.41	0.00888	0.7B	96	0.00287	0.61	31	0.00109	0.3	12	0.02170	0.95	235
		8 17.41	-0.00848	0.92	-2.12	0.01310	0.88	137	0.00254	0.48	27	0.00050	0.9	С	0.02303	0.4/	241
HORN.P	T 7MAY85	6 16.89	-0.00923	0.99	-2.24	0.01971	0.99	200	-0.00196	0.88	-20	-0.00004	0.000	0	0.06190	0.98	627
		R 15.45	-0.00968	0.99	-2.15	0.01757	0.99	164	-0.00108	0.2	-10	0.00130	0.82	12	0.06575	0.99	610
-,		8 16.70	-0.00816	0.77	-1.78	0.01928	0.99	173	-0.00332	0.82	-24	0.00048	0.63	3	0.0/369	0.98	/48
WIND.H	IL 7MAY85	G 20.73	-0.0122	0.99	-3.64	0.00193	0.09	24	0.00107	0.07	13	0.00112	0.7	14	0.04165	0.97	518
a .		R 18.2B	-0.0144	0.99	-3.79	0.00250	0.59	27	0.00035	0.02	4	0.00080	0.94	9	0.05678	0.91	623
		B 20.12	-0.0143	0.77	-4,14	0.00/88	0.53	75	-0.00098	0.008	-12	0.00074	0.62	11	0.05039	0.95	509
RAG.P	T 9MAY85	6 19.05	-0.00819	0 .99	-2.24	0.04158	0.99	475	-0.00641	0.93	-73	0.00208	0.82	24	0.03540	0.73	405
		R 19.41	-0.00473	0.99	-1.32	0.02424	0.99	282	-0.00503	0.97	-59	0.00114	0.88	13	0.02651	0.88	309
		B 10.77	-0.00007	0.77	-1.05	0.02/22	0.99	343	-0.004/2	0.99	-34	0.00148	0.87	19	0.03843	0.89	484
MD.PT	9MAY85	G 14.91	-0.004%	0.99	-1.05	0.01171	0.81	105	-0.00288	0.58	-26	0.00075	0.13	7	0.05976	0.81	535
		R 15.76	-0.00546	0.98	-1.55	0.00756	0.63	90	-0.00288	0.88	-34	0.00019	0.16	2	0.03759	0.43	446
		5 10.7/	-0.00348	0.78	-1.47	0.01236	0.92	141	-0.00261	V. 37	-20	0.00020	0.13	2	0.01813	0.27	206
PT.NO.	PT BMAYB5	6 20.48	-0.00295	0.99	-0.87	0.01579	0.95	194	-0.00292	0.91	-36	0.00012	0.12	1	0.03920	0.95	482
		E 20.34	-0.003	0.99	-0.87	0.05720	0.94	698	-0.00332	0.84	-40	0.00030	0.82	4	0.02811	0.85	343
· • ••		5 20.00	0.00288	V.17	-0.03	0.00337	V.73	10	-0100221	0.63	-41	0.00024	V. 66	ა	0.02338	0.0	320
R-64	6MAY85	6 20.43	-0.0035	0.97	-1.02	0.01176	0.92	144	-0.00305	0.5	-37	-0.00010	0.18	-1	0.01652	0.75	203
		H 19.41	-0.0008/8	0.86	-0.24	0.01757	0.89	205	-0.00619	0.87	-72	0.0000B	0.02	1	0.04483	0.96	522
		D 13.04	0.0031)	v. 50	0.70	0.0294/	0.70	223	-0.00281	0.0	-20	0.00027	V. 07	2	0.03781	0.02	200
R-78	7MAYB5	6 15.65	-0.005373	0.99	-1.21	0.02006	0.88	188	-0.00551	0.6B	-52	-0.00030	0.43	-3	0.01315	0.69	123
		R 16.44	-0.0043	0.99	-1.01	0.01479	0.92	146	-0.00370	0.84	-37	0.00013	0.3	1	0.01574	0.33	155
		5 1 4.28	-0.004/2	V. 77	-0.7/	v.v23/3	V. 77	<i>11</i> 1	-0.004Bl	V./5	-41	-0.00039	U. 24	-5	0.02729	0.85	234
STIL.P	D 8MAY85	6 19.59	-0.01172	0.98	-3.30	0.03849	0.94	452	0.00092	0.01	11	0.00193	0.98	23	0.03863	0.79	454
~ - n		R 18.33	-0.00B02	0.98	-2.11	0.00517	0.84	57	-0.00864	0.73	-95	0.00021	0.72	2	0.03309	0.88	364
		11.01	0.00/0/	0.75	-1117	v. 00477	0.32	در.	-0.00778	v.88	-103	0.00013	A*13	8	0.01613	0.08	170

No. 5-5.

LONG-TERM BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE(SONE) SUMMARY TONEFLX(Summary of sediment-water exchanges expressed in units of mass/m2/time.

				g02/m2	/d		ug-atl	1/m2/1	1	ug-atN.	/m2/h		u g -atF	/#2/	h	ug-at	Si/m2/h
		CORE	*****	02 FLX			NH4 FI	.X		NO3 FL	X .		PO4 FL	.X		SI FL	X
TATION DATE	NC	DEPIR) (cm)	n. R	r 2	flux		r2	flux	ŵ	r2	flux		r2	flx		r2	flux
ST.LEO 25JUNE85	R	19.59	-0.0107	0.99	-3.0	0.00735	0.7	86	0.00651	0.B1	76	0.00203	0.64	24	0.03637	0.92	427
	6 8	20.48	-0.00948	0.99	-2.8 -7.6	0.00446	0.9	55 105	0.00891	0.97	110 79	0.00054	0.37	8 -2	0.03342	0.91	411 305
				•••						••••				-			
U.VISTA25JUNE85	R	19.05	-0.00288	0.99	-0.8	0.02005	0.87	229	0.00246	0.31	28	0.00074	0.73	8	0.00667	0.14	76
	6	19.48	-0.00365	0.99	-1.0	0.02003	0.97	234	0.00154	0.35	18	-0.00099	0.29	-12	-0.01843	0.24	-215
	B	19.91	-0.00498	0.99	-1.4	0.03192	0.99	381	0.00040	0.09	5	0.00191	0.85	23	-0.00604	0.07	-72
HORN.PT 26JUNE85	R	20.66	-0.0111	0.99	-3.3	0.02041	0.98	253	0.01151	0.89	143	0.00018	0.03	2	0.05354	0.83	664
	6	21.81	-0.014	0.99	-4.4	0.02146	0.98	281	0.01434	0.95	188	0.00061	0.18	8	0.04310	0.98	564
	B	21.13	-0.013	0.99	-4.0	0.01807	0.9	229	0.00858	0.89	109	0.00125	0.63	16	0.04262	0.84	54 0
HIND.HIL NODATA																	
RAG.PT 24JUNE85	R	23.11	-0.00049	0.65	-0.2	0.01847	0.99	256	0.00098	0.56	14	0.00171	0.94	26	0.02616	0.98	363
	6	23.50	-0.00075	0.54	-0.3	0.02626	0.99	370	0.00046	0.09	7	0.00278	0.86	39	0.02577	0.89	363
	B	23.40	-0.00044	0.32	-0.1	0.02985	0.99	419	-0.00052	0.38	-7	0.00232	0.95	33	0.02319	0.97	326
MD.PT 24JUNE85	i R	18.33	-0.00045	0.82	-0.1	0.00465	0.9	51	-0.00140	0.18	-15	0.00063	0.46	7	0.01411	0.66	155
	6	19.98	-0.00154	0.96	-0.4	0.00405	0.67	49	-0.00187	0.58	-22	0.00068	0.35	8	0.01164	0.45	140
	B	20.05	-0.00198	0.99	-0.5	0.00582	0.9	70	-0.00043	0.09	-5	0.00066	0.59	8	0.00576	0.08	69
PT.NO.PT24JUNE85	i R	20.84	-0.00342	0.98	-1.0	0.03691	0.99	462	-0.00042	0.03	-5	0.00308	0.96	38	0.09240	0.89	1156
	6	20.77	-0.00227	0.81	-0.7	0.03100	0.99	386	-0.00104	0.06	-13	0.00236	0.87	29	0.06444	0.98	803
	B	22.50	-0.00145	0.91	-0.5	0.02573	0.96	347	0.00054	0.05	i 7	0.00047	0.87	6	0.07036	0.98	950
R-64 25JUNE85	i R	19.98	-0.0014	0,89	-0.4	0.03142	0.99	377	-0.00170	0.18	-20	0.00310	0.93	37	0.06011	0.85	721
	6	17.75	-0.00183	0.97	-0.5	0.05480	0.98	584	-0.00214	0.47	-23	0.01102	0.99	117	0.10280	0.98	1095
	B	19.01	-0.00102	0.55	-0.3	0.03010	0.95	343	-0.00326	0.65	-37	0.00935	ú.99	107	0.09225	0.99	1052
R-78 27.11NER	; p	14 77	-0 00122	ሰ ሌን	-ñ र	A A1897	0.00	147	ስ በሰን75	<u>() 50</u>	74	<u>0 00070</u>	Λ 4	7	0 05502	0 0 00	AQ7
n is zisynese	יי, ה	18.11	-0.00116	0.94	-0.3	0.02280	0.99	24R	0.00014	0.007	1	0.00174	0.94	14	0.04302	6.99	449
	B	17.97	-0.00037	0.74	-0.1	0.00869	0.85	94	0.00277	0.55	30	0.00063	0.79	7	0.02587	0.98	279
	; P	21 70	-0 00447	0 00	-1 4	0 00400	0.75	<u>ل</u> ر	-0 00037	0 000) _4	0 2000 Q	Λ 74	5	0 00075	5 0 001	10
····· / //////////////////////////////	л, А	21.30	-0.00394	0.99	-1.2	0.00988	0 77	17A	-0.00040	0.007	, –5,	0.00030	0.10	, J R	0.01097	, 0.001 (1 17
	R	22.28	-0.00407	0.9R	-1.3	-0.00170	0.73	-23	-0.00101	0.17	, J -14	0.00047	0.98	6	-0.00013	6.000) -2
	2								******	v /	• 1	*******			******		· •

Data Table No. 6-1

LONG-TERM BIOMONITORING PROGRAM: VERTICAL FLUX PROGRAM

VFXPROF (Vertical water column profiles of temp.,salinity,oxygen and particulates)

STATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP (C)	SALINITY (ppt)	DISSOLVED OXYGEN (mg/1)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORO (ug/1)	SESTON (mg/l)
R-64	23-JULY-84	1600	16.0	1	26.9	8.4	9.70	1829	276	25.2	22.9	13.2
				3	26.1	8.3	8.80					
				4				1124	190	14.8	15.3	11.5
				2	26.0	ŭ.4 0.4	8.10					
				/	23.8	B.4	/.80	500	100	17.0	0 7	1 7
				0 0	25 G	05	7 70	JOZ	100	13.0	0.1	9.7
				10	23.0	D.J	1.30	681	119	16.1	7.4	16.6
				11	24 5	9.9	0.90	110		1011	/ • 1	
				13	24.0	10.8	0.80					
				15	23.3	12.6	0.30	286	51	12.8	1.7	10.1
R-64	30-JULY-84	09 00	16.0	1	24.2	7.0	7.75					
				2				102 8	205	27.0	20.9	6.9
				3	24.4	7.0	7.75					
				5	24.2	7.0	7.70					
				6				975	202	25.3	19.1	6.6
				7	24.5	7.0	7.60	_				
				9	24.7	11.7	3.75	514	99	19.B	4.9	5.4
				11	23.9	16.3	0.25					
				12	07.0			262	44	7.4	1.9	5.4
				15 15	23.9	17.0 18.4	0.20	238	40	7.4	2.1	6.0
R-64	07-416-84	1 22 0	16.8	1	26.0	7.0	9.30					
		****		3	26.0	7.0	8,90	1191	240	29.3	22.0	15.2
				5	25.5	7.9	7.40	••••				
				6				679	141	23.0	5.7	10.2
				7	25.0	8.5	3.50					
				9	24.5	12.1	0.70	572	119	24.9	3.8	12.8
				11	24.0	13.1	0.60					
				12				382	70	14.0	1.6	7.9
				13	23.2	17.3	0.45					
				15	22.5	19.0	0.25	293	54	12.5	3.6	8.6
				16	22.5	19.1	0.25					
R-64	14-AUG-84	1203	16.8	1	28.0	8.1	7.35					_
				2	67 E		7 64	1214	220	25.0	10.4	7.0
				ა ნ	2/.3) 8.V	7.30	+ ^ ^ 0	201	75 A		7 /
				י ר	21.J	D.J.	J. 1V	1007	201	23.V	1.1	/•
				/ 0	20.3	} 7∎ ¶	1.70	ALA	D1	77 0	1 0	0 4
				0 Q	25 1	12.9	A 45	707	01	22.7	1.0	0,1
				11	23.5	1R.0	0.55	268	49	9.R	1.5	6.1
				13	23.1	18 5	0.45	200				~

.

			TOTAL	SAMPLE			DISSOLVED					
STATION	DATE	TINE	DEPTH (m)	DEPTH (m)	TEMP (C)	SALINITY (ppt)	OXYGEN (mg/l)	PC (ug/l)	PN (ug/1)	PP (ug/1)	CHLORD (ug/1)	SESTON (mg/1)
R-64	22-AUG-84	0900	16.8	1	25.0	8.6	6.60			 74 L	B ()	7 (
				7	25 A	0 4	6 60	IVII	111	24:0	D • V	1.
				5 5	25.0	9.5	4.90					
				5	2010	/ · ·	1170	880	187	24.9	6.3	7.
				7	25.0	13.0	2.55					
				, 9	25.0	15.0	0.20	635	124	24.0	4.4	7.
				11	24.0	19.2	0.20					
				12				2 4 B	45	11.5	0.9	8.
				13	24.0	21.0	0.20					
				15	24.0	21.0	0.20	213	50	12.5	1.1	8.
R-64	30-AUG-84	1325	16.2	. 0	25.6	12.9	8.30					
				1				1503	254	37.5	7.5	8.
				2	24.8	13.0	7.90					
				4	24.8	13.0	7.30					
				6	24.5	13.1	6.60	832	161	25.1	4.7	8.
				8	24.3	13.1	6.00				~ ^	
				9			7 14	514	102	20.3	2.0	13
				10	24.1	15.1	3.10					
				12	25.1	16.4	0.70	55/	107	77 ^	1 1	17
				13	77			- 330	103	2210	1.0	17.
				14	23.0		0.40	417	70	25 5	1 7	18
				10	23.(. 10./	0.30	11/	,,	20.0	110	101
R-64	17-SEPT-84	1830	17.7	1	22.5	5 14.5	9.90					
				2				1922	296	43.7	16.7	42
				3	22.	7 14.4	9.90					
				5	22.	7 14.3	9.60					
				7	22.	7 14.5	i 9.20					
				В				1548	267	34.5	13.9	43
				9	22.	7 14.4	8.80					
				11	22.	6 14.4	B.60				_ = =	. <u>.</u> .
				13	22.	5 14.8	3 7.90	976	157	27.5	9.9	21
				15	23.	7 17.3	5 3.70					
				16				454	79	25.2	2.9	16
				17	24.	1 18.3	5 1.90	754	120	32.3	5 3.8	3 23

STATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP (C)	SALINITY (ppt)	DISSOLVED OXYGEN (mg/1)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORO (ug/1)	SESTON (mg/1)
R-64	24-SEPT-84	Ú940	17.6	1	22.1	14.1	8.70					******
				2				956	167	20.0	6.0	19.3
				3	22.1	14.1	8.80					
				5	22.3	14.3	8.40					
				6				956	172	18.4	7.2	19.4
				7	22.2	14.6	7.90					
				9	22.3	14.4	7.70	1024	184	22.3	6.8	21.
				11	22.3	15.1	6.90					
				13	22.5	15.6	5.20	615	118	23.7	2.9	23.
				15	23.0	17.3	1.90					
				16				905	157	30.5	3.9	28.
				17	23.3	18.0	0.90					
R-64	04-DCT-84	1000	19.0	i	18.5	12.3	9.10					
				2				615	126	17.2	5.3	14.
				3	18.5	12.5	9.05					
				5	18.2	12.6	9.00	495	97	17.4	5.1	14.
				7	18.2	12.6	8.20					
				9	18.5	13.0	7.90	344	70	12.4	3.3	8.
				11	18.1	13.0	7.90					
				13	18.5	13.7	7.60					
				15	18.5	13.9	6.90	411	79	12.1	2.2	16.
				17	19.0	14.1	6.00					
				19	19.6	14.8	5.70	581	96	17.2	2.2	15.
R-64	16-0CT-84	1540	19.0	i	17.7	12.8	10.40	1271	212	27.0	6.9	15.
				3	17.8	14.8	9.30					
				5	17.4	15.9	8.40	477	90	11.6	2.9	7.
				7	17.3	16.1	8.30					
				9	17.8	16.5	8.10					
				11	18.0	17.3	6.90	345	62	10.6	2.0	7.
				13	18.1	17.5	6.80					
				15	18.3	18.7	5.40	313	53	11.2	1.8	7.
				17	18.4	19.6	5.10				-	
				19	18.7	18.4	4.70	629	101	21.3	7.0	28

			TOTAL	SAMPLE			DISSOLVED	1				
STATION	DATE	TIME	DEPTH (m)	DEPTH (m)	TEMP (C)	SALINITY (ppt)	OXYGEN (ag/1)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORO (ug/1)	SESTON (mg/l)
R-64	30-NOV-84	1000	18.0	1	11.0	14.5	10.90	395	65	10.6	2.6	5.2
				3	10.9	14.5	10.90					
				5	10.9	14.5	10.90	375	63	10.4	2.1	4.7
				7	10.9	14.5	10.90					
				9	10.9	14.7	10.80	367	63	10.2	2.3	9,4
				11	11.0	14.8	10.80					
				13	11.0	14.9	10.70	239	43	8.9	1.5	4,4
				15	11.0	15.0	10.70	047	100	<u></u>	. /	20.5
				17	11.2	15.2	10.20	847	122	22.2	2.0	22.1
R-64	17-DEC-84	0920	16.5	i	8.1	15.8	12.20	378	70	10.9	3.3	3.2
				3	8.1	17.1	12.20					
				5	8.1	17.4	12.00	378	- 73	9.5	3.7	2.9
				7	8.2	18.2	11.30	***				
				4	8.2	18.7	11.20	353	67	10.0	3.5	3.1
				11	8.2	18.9	11.80	701	7/		7 (7 7
				15	0.9 0 /	20 4	10.30	371	/0	11.1	2.1	2.6
				16	9.1	22.1	B.90	417	68	14.5	2.5	7.6
D	(0	0040	10 /		1 5	17 5	14 70	1011		10.0		
N-04	17-10-01	0740	10.0	1.	1.1	13.3	14.20	1011	10/	12.7	0.0	0.5
				J	1.2	11.0	14.20	1002	177	17 1	7 0	5 (
				7 5	1.7	14.0	14.20	1002	137	14.1	/.v	3,0
				7	1.0	14.3	14.10					
				9	1.0	15.0	13.50	1380	216	20.2	12.0	11.6
				11	1.0	15.5	13.00					••••
				12				1444	224	18.5	11.B	10.2
				13	1.2	16.0	12.60	1444	224			
				15	1.2	16.0	12.60					
				17	1.5	16.5	12.40	1964	300	30.6	16.4	17.5
R-64	5-MAR-85	0918	18.0	1	6.2	11.7	14.10	707	109	12.2	5.1	5.(
				3	5.8	11.6	14.20					
				5	5.5	11.7	14.20					
				7	5.7	13.2	14.00					
				9	5.5	13.2	14.00	96 8	144	11.5	8.1	8.
				11	4.9	13.9	13.60	1000	153	13.5	9.0	7.
				13	4.3	14.8	13.20	1585	235	17.4	14.2	14.1
				15	3.2	17.3	11.90					
				17	3.0	17.9	11.60	9203	1176	110.0	36.7	B5.1

			TOTAL	SAMPLE			DISSOLVED					
STATION	DATE	TIME	DEPTH	DEPTH	TEMP	SALINITY	OXYGEN	PC	PN	PP	CHLORO	SESTON
			(m)	(m)	(C)	(ppt)	(mg/1)	(ug/l)	(ug/])	(ug/1)	(ug/l)	(mg/l)
R-64	1-APR-85	0940	17.7	1	9.1	10.2	13.00	1349	202	22.7	31.3	7.1
				3	9.0	10.2	13.00					
				5	8.8	10.1	12.80	1322	218	15.0	34.0	5.6
				7	8.8	10.2	12.80					
				9	7.5	12.1	12.10	1299	205	15.0	38.1	10.8
				11	7.5	12.6	10.10	1452	213	17.9	10.0	14.0
				13	7.5	14.0	9.90					
				15	7.5	14.0	9.60	1576	240	18.7	24.6	13,4
R-64	15-APR-85	1015	17.7	1	11.4	13 .6	13.20	1622	227	13.3	29.2	13.1
				. 3	11.1	13.6	13.60					
				5	10.9	14.6	13.50	1520	221	14.4	32.4	12.3
				7	10.9	14.3	13.30					
				9	10.3	14.5	13.20	13B7	212	13.3	19.7	11.6
				11	9.1	15.9	10.40					
				13	8.9	18.3	8.40	2448	386	22 . 8	54.8	20.4
				15	8.6	18.5	8.30					
				17	B.4	18.9	7.90	2210	348	20.1	41.5	16.7
R-64	30-APR-85	1035	.17.7	1	16.7	12.4	11.00	1298	213	17.0	13.1	19.0
				3	16.3	12.6	11.00					
				5	16.1	12.9	10.80					
				6				1755	300	20.3	26.9	17.2
				7	15.2	14.1	9.30					
				9	12.0	20.7	5.90	1984	326	39.0	12.3	ND
				11	12.2	22.0	6.30					
				12				1033	173	17.3	11.7	24.3
				13	12.4	21.1	6.30					
				15	12.2	21.1	6.30	937	189	17.1	10.5	19.4
				16	12.4	22.2	6.30					
R-64	8-MAY-85	1150	17.5	1	16.8	11.2	9.12	729	116	11.0	10.3	8.2
				2	16.6	11.2	9.12					
				4	16.2	11.2	8.82	852	134	11.9	11.2	7.7
				6	15.4	12.0	7.52					
				8	15.0	12.6	6.52	875	152	14.4	13.9	7.6
				10	14.8	12.7	4.90					
				12	14.4	15.6	3.90	672	144	15.0	8.3	10.0
				14	14.0	16.0	3.70					
				16	13.8	16.2	3.70	855	164	20,0	7.8	15.6

			TOTAL	SAMPLE			DISSOLVED					
STATION	DATE	TIME	DEPTH (m)	DEPTH (m)	TEMP (C)	SALINITY (ppt)	OXYGEN (mg/l)	PC (ug/l)	PN (ug/l)	PP (ug/1)	CHLORO (ug/1)	SESTON (mg/l)
 R-64	27-MAY-R5	0830	17.5			12.4	7.92	917			5.6	 7.6
N 04	27 1163 00	0000	1710	2	19.8	17.4	7,91					
				4	19.2	12.6	7.50					
				6	19.1	12.8	7.35					
				8	18.9	13.1	6.30	451	81	9.B	2.8	2.4
				10	18.5	14.3	5.34					
				11				403	74	9.9	1.9	3.9
				12	18.1	15.5	3.99					
				14	17.5	16.2	2.27	339	63	11.0	1.7	4.0
				16	17.4	16.8	1.94	400	62	13.1	2.0	5.4
R-64	5-JUN-85	1745	17.0	1	21 . 8	12.2	ND	209B	345	34.6	36.5	8.6
				2	21.8	12.2	8.50					
				4	21.5	11.4	7.30	972	163	16.0	12.8	7.1
				6	21.1	13.0	6.80					
				B	20.5	13.0	4.70	627	128	16.2	5.6	5.2
				10	19.5	14.8	3.00					
				12	19.5	17.0	2.B0	363	58	70.0	3.0	7.1
				14	19.0	17.9	2.40					
				15	19.0	18.0	2.35	354	58	92.0	2.1	6.6
R-64	18-JUN-85	1100	17.0	1	23.6	13.2	9.10	1731	316	25.7	14.8	20.6
				2	23.1	13.1	9.10					
				4	22.9	13.5	8.31					
				6	22.8	13.8	7.95					
				B	22.5	5 14.0	7.15					
				10	22.6	5 14.2	5.00	980	166	15.4	6.8	6.6
				12	21.6	5 14.8	3.72	692	139	18.9	3.6	9.7
				14	21.6	8 15.7	1.85	715	133	11.5	3.3	11.0
				16	20.7	7 16.1	0.90	606	109	12.5	2.9	10.6
R-64	25-JUN-85	1540	17.5	1	25.7	7 13.B	9.85	2080	337	30.3	15.8	24.8
				2	24.3	3 13.0	9.60					
				4	24.(13.2	8.60					
				6	23.9	9 13.2	8.35					
				B	23.1	13.2	8.12	1196	257	22.9	9.2	1.1
				10	23.	b 13.3	6.50					
				12	22.4	4 14.0	3.05	751	173	28.7	4.8	16.
				14	21.	7 14.8	1.10	650	138	17.8	3.0	7.7
				16	21.6	6 15.5	0.55	513	92	20.7	2.0	7.7

------TOTAL SAMPLE DISSOLVED STATION DATE TIME DEPTH DEPTH TEMP SALINITY OXYGEN PC PN PP CHLORD SESTON (m) (C) (ppt) (mg/l) (ug/l) (ug/l) (ug/l) (ug/l) (mg/l) (g) -------TOM.PT 23-JULY-84 1120 15.8 1 28.3 4.8 7.70 1072 199 27.6 22.9 10.8 3 26.2 4.9 8.10 5 25.9 5.0 6.60 674 120 23.4 11.9 8.9 7 25.5 5.4 6.20 9 8.8 418 73 16.B 4.5 8.3 24.2 3.80 11 23.8 9.7 1.20 300 50 16.3 1.5 8.0 13 22.7 11.5 0.40 54 15 22.5 12.7 0.20 329 17.1 2.1 13.1 1 TOM.PT 30-JULY-84 1325 15.3 24.4 5.6 7.80 2 B78 166 30.4 22.4 8.8 3 24.2 5.8 7.15 5 24.4 7.7 498 108 4.10 20.4 10.9 6.6 7 24.2 9.3 1.80 8 301 50 21.7 2.2 7.3 9 23.4 12.2 0.20 22.9 14.4 0.20 220 43 9.1 11 9.1 5.8 13 22.9 14.4 0.35 14 722 117 19.7 5.4 17.6 15 22.7 14.7 0.30 TOM.PT 07-AUG-84 16.2 1020 1 26.5 5.7 8.90 1556 2 277 36.3 24.4 11.4 3 7.80 26.0 6.3 5 25.0 7.7 5.30 6 B16 150 31.7 11.2 7.8 7 24.0 12.5 0.40 9 23.2 14.6 0.25 358 64 28.1 2.1 9.8 11 23.0 17.0 0.25 330 24.5 59 2.1 9.3 13 23.0 17.0 0.25 72 15 23.0 426 17.0 0.20 26.7 2.7 6.5 TOM.PT 14-AUG-84 1007 16.8 1 27.0 7.5 7.80 2 2073 402 60.3 21.3 11.2 3 27.0 7.5 7.40 5 27.1 7.7 7.20 903 183 31.7 8.6 4.9 7 25.9 10.0 1.80 8 537 92 31.0 1.0 10.6 9 24.8 13.5 0.75 11 0.50 24.2 14.8 439 71 37.0 3.0 7.7 13 23.8 0.55 16.5 15 23.1 342 58 17.1 0.60 21.7 2.1 11.3

ľ

LONG-TERN BIOMONITORING PROGRAM: VERTICAL FLUX PROGRAM

VFXPROF (Vertical water column profiles of temp.,salinity,oxygen and particulates)

STATION	DATE	TIME	TOTAL Depth	SAMPLE DEPTH	TEMP	SALINITY	DISSOLVED OXYGEN	PC	PN	PP	CHLORO	SESTON
			(m)	(m)	(C)	(ppt)	(mg/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(mg/1)
TOM.PT	22-AU 6-84	1146	16.8	i	25.0	8.6	7.10		*****			
				2				1284	250	29.6	9 . B	15.2
				3	24.5	8.6	6.60	1174	238	30.1	9.1	15.4
				5	24.0	12.5	3.75					
	*.			6				317	57	16.3	1.0	17.9
				7	24.0	15.5	0.75					
				9	23.0	19.4	0.30	449	68	23.7	1.3	17.2
				11	23.0	19.4	0.25					
				13	23.0	17.4	0.25			 .		
				15	23.0	19.4	0.25	529	80	31.1	1.2	21.1
TOM.PT	30-AUG-84	1010	15.2	0	24.3	12.4	6.80	1287	247	50.2	10.2	17.2
				2	24.3	12.4	6.80					
				4	24.4	12.5	6.30	1002	189	42.3	6.2	17.6
				6	24.2	12.6	5.70					
				8	24.1	12.7	5.80					
				10	24.1	12.7	5.70					
				11				700	128	25.7	4.2	11.2
				12	24.2	13.5	4.60					
				14	23.2	16.5	3.30	711	113	26.8	2.1	10.4
				15	23.2	2 18.4	0.30	565	110	27.6	2.4	16.8
R-78	17-SEPT-84	2030	15.3	i	21.4	11.8	7.90	687	129	24.4	5.5	14.2
				3	21.8	5 12.1	7.60					
				5	21.8	i2.B	6.B0					
				6				572	103	21.7	4.3	12.6
				7	22.2	2 13.2	6.30					
				9	22.4	13.9	5.60					
				10				466	84	25.5	2.5	11.6
				11	23.2	15.6	2.80		_			
				13	23.	16.7	1.20	424	72	17.3	1.1	15.0
				15	23.6	5 17.5	0.70	1072	165	58.7	3.9	55.2
R-78	24-SEPT-84	1300	15.0	1	23.5	5 11.4	8.60					
				2				1391	241	34.3	19.2	17.(
				3	23.1	11.5	6.90					
				5	22.9	12.1	6.60	1047	186	33.6	12.5	14.4
				7	22.	5 12 .3	6.70					
				8				1071	181	35.7	11.6	14.(
				9	22.	12.6	6.60					
				11	22.	D 12.6	6.50			- , -		
				12	~~ ~		.	1094	180	36.5	11.2	13.
				13	22.		5.60					-
				15	22.	/ 13.0	5.20	1302	200	3/.7	6.8	51.4

.

STATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP (C)	SALINITY (ppt)	DISSOLVED Oxygen (mg/1)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHL ORO (ug/1)	SESTON (mg/1)
R-78	04-0CT-84	1330	15.2	t	19.8	12.1	9.25			********	~~~~~	
				2				519	92	16.3	4.9	10.8
				3	19.0	11.7	8.30					
				5	18.9	11.6	7.90	329	59	12.8	2.6	B.C
				7	18.7	11.5	7.70					
				B				400	67	15.B	2.4	9.6
				9	18.8	11.9	7.50					
				11	18.8	11.9	7.40					
				12				439	73	18.6	2.2	10.8
				13	18.9	12.0	7.10					
				15	19.0	13.1	6.60	856	135	31.3	2.7	21.7
R-78	16-0CT-84	1100	16.4	1	17.7	12.1	8.30	812	172	28.0	9.9	13.0
				- 3	17.8	13.3	B. 20					
				5	17.9	14.1	8.20	587	110	16.8	4.4	5.4
				7	17.9	14.7	7.70					
				9	18.0	13.5	7.20	514	80	15.7	3.0	7.4
				11	18.3	16.6	5.60			•		
				13	18.5	18.4	4.60	398	70	13.0	1.8	9.(
				15	18.6	18.8	4.20					
				16	18.8	18.9	4.00	581	98	27.7	3.6	37.0

STATION	DATE	TIME	TOTAL DEPTH (•)	SAMPLE DEPTH	TEMP (C)	SALINITY (ppt)	DISSOLVED DXYGEN (mg/l)	PC (ug/l)	PN (ug/l)	PP (ug/1)	CHLORO (ug/1)	SESTON (mg/l)
					·····				 (97			5 4
X-\8	30-NUV-84	1200	17.0	1 7	11.3	13.2	11.20	667	127	1/.5	2.1	3.0
				ن ج	10.0	13.0	11.30	447	RA	17 2	A 1	53
				5	10.0	13.0	11.30	402	τŲ	1/•4	711	515
				, q	10.8	13.2	10.90	373	72	16.4	3.0	5.4
				11	10.9	13.3	10.70	010	· •			•••
				13	10.9	13.5	10.60	509	90	16.4	2.8	6.6
				15	11.0	13.9	10.30					
				16	11.1	14.6	9.80	1013	147	35.8	3.6	21.2
R-78	17-DEC-84	1150	15.9	1	7.8	9.7	11.60	577	101	20.7	5.2	4.2
	••••••			3	7.0	12.6	11.00					
				5	7.4	15.0	9.90	345	64	15.2	2.3	4.6
				7	7.4	16.7	9.BO					
				9	7.6	18.3	9.50	349	66	14.5	2.3	4,(
				11	8.0	20.1	8.60	448	67	16.6	2.5	8.(
				13	8.3	20.8	B.40					
				15	8.4	21.0	8.20	1319	183	47.B	3.4	29.8
R-78	19-FEB-85	1156	17.4	1	2.2	10.0	14.40	1226	205	17.7	8.9	7.6
				3	1.2	10.5	14.40					
				5	1.2	11.2	14.20					
				6				1226	192	21.4	8.6	11.4
				7	1.2	12.5	13.80					_
				9	1.0	13.0	13.60	1175	202	18.6	9.7	7.4
				11	1.5	i 14.0	13.40			-		
				12				1344	233	31.1	11.8	11.0
				13	1.0		12.40	0/50	704			
				15	1.0) 15.0	12.20	2652	374	94.0	1/./	43,1
R-78	5-MAR-85	1210	17.0	1	7.1	7.9	13.70	941	152	18.2	7.1	6.
				3	6.3	5 8,2	13.60					
				5	5.9	7 B.9	13.60	13B0	234	26.2	12.2	9.
				7	5.4	9.9	13.20	-		.	 -	-
				9	4.9	11.7	12.60	2105	356	31.2	20.9	9.
				11	4.9	13.8	11.70				.	
				13	3.6	14.4	11.50	2806	478	40.5	26.6	18.
				15	3.7	/ 14.6	11.40				** *	
				16	3.6	5 14.7	11.40	2998	499	64.0	28.8	30.

BIGMONITORING; VERTICAL FLUX PROGRAM

VFXPROF (Vertical water column profiles of temp., salinity, oxygen and particulates)

STATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP (C)	SALINITY (ppt)	DISSOLVED OXYGEN (mg/l)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORO (ug/1)	SESTON (mg/1)
R-78	1-APR-85	1145	16.8	1	10.9	7.0	11.50	1194	190	20.5	7.9	7.6
				3	10.8	7.0	11.50	140	507	0E 0		10.7
				. 7	8.7	10.3	9.60	1047	270	20.7	27.4	10.5
				9	B.3	12.4	8.70	1851	327	23.8	36.3	12.7
				11	7.1	13.8	8.50					
				13	7.2	14.9	8.40	1883	315	26.4	29.2	14.4
				15	7.2	14.9	8.30	2187	354	31.8	41.8	19.2
R-78	15-APR-85	1325	17.0	1	11.3	7.0	11.50	1594	254	31.2	19.6	8.8
				3	10.9	8.5	11.40					
				5	10.0	10.5	10.90	1902	306	29.6	21.0	13.0
				/ Q	7.1	19.0	10.70	2086	741	25.4	45 A	17 0
				11	8.6	16.1	10.70	2077	501	13.0	73:0	1/10
				13	8.5	17.7	8,40	2568	415	33.6	42.9	22.0
				15	8.4	18.9	5.60					
				17	8.0	19.6	5.20	1700	293	28.1	29.7	18.0
R-78	27-MAY-85	1115	16.5	1	20.6	B.6	7.75	1247	218	19.0	14.3	5.7
				4	19.5	9.9	/.13 6 50					
				6	19.0	10.8	6.15	433	67	ND	3.0	6.0
				B	18.0	12.5	4.24					
				9				460	85	14.3	3.6	5.2
				10	17.0	14.0	2.50					
				12	16.4	14.6	1.68	530	101	13.1	6.2	6.0
				14 16	16.1	14.8	1.51	500	95	15.0	3.5	6.2
R-78	5-JUN-85	1640	16.0	1	21.9	9.R	6 85	1185	210	26 3	15 4	15 0
				2	21.0	10.2	5.65	1100	210	2010	4917	1010
				4	19 .8	11.B	4.10	66B	122	17.3	4.5	10.6
				6	19.0	13.0	2.60					
				7	18.5	13.5	1.90	504	91	16.5	2.8	7.0
				8	18.4	13.8	1.75	500				
				10	18.2	14.0	1.60	204	93	12.8	2.9	10.4
				14	17.9	15.2	0.75	777	109	25.9	4.7	15.6
R-78	18-JUN-85	1330	15.5	1	22.9	11.0	8.09	2232	413	37.6	24.9	14.4
				2	22.8	11.0	8.09					
				4	22.5	11.5	6.72					
				6	21.9	11.7	5.69	1095			4= -	
				10 10	21.7 71 #	11.9	4.99 2 55	1235	227	28.6	13.0	13.4
				10	21.4	13.7	1.75	7/4 793	131	21.7	4.U 4.3	0.0 9.5
				**			1110		1.00	£11/	715	1.1

STATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP (C)	SALINITY (ppt)	DISSOLVED OXYGEN (mg/l)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORD (ug/1)	SESTON (mg/1)
R-78	27-JUN-85	1045	16.8	1	22.5	10 .8	7.48	1690	318	43.1	18.3	20.6
				2	22.5	10.8	7.42					
				- 4	22.6	10.9	7.20	1388	279	32 . 3	16.7	15.2
				6	22.5	11.1	6.52					
				8	22.4	12.5	4.72	1012	223	23.2	10.7	9.6
				10	22.3	14.0	2.38					
				12	21.8	14.5	1.90	820	163	22.2	4.9	16.8
				14	21.6	14.7	1.58					
				15	21.5	ND	0.92	692	128	27.2	4.0	17.7

-

LONG-TERM BIOMONITORING PROGRAM: VERTICAL FLUX VFXSEDS (description of particles in the surface 1 cm of the sediment column)

STATION	DATE	PC (%)	PN (%)	PP (ኚ)	CHLORO (mg/m2)
R-64	23JUL Y84	3.11	0.43	0.059	19.6
	30JULY84	2.74	0.34	0.048	12.43
	7AU684	2	0.37	0.054	19.21
	14AU684	3.62	0.5	0.06	13.37
	22AU684	3.78	0.51	0.064	16.01
	30AU684	2.91	0.4	0.05	12.81
	17SEPTB4	ND	ND	ND	ND
	24SEP184	3.09	0.39	0.062	5.6
	400184	2.4	0.3	0.051	5.82
	30NOV84	2.52	0.31	0.055	7.63
	17DEC84	3.89	0.39	0.059	7.41
	19FEB85	2.88	0.44	0.066	10.44
	SMARB5	3.42	0.49	0.073	12.33
	1APR85	3.29	0.39	0.055	33.7
	15APR85	2.66	0.34	0.056	54.2
	30APR85	2.66	0.34	0.057	68.9
	BMAY85	3.64	0.48	0.081	49.5
	27MAY85	2.74	0.36	0.055	34.57
	5JUN85	2.88	0.3B	0.06B	41.61
	18JUN85	2.92	0.39	0.063	42.83
	25JUN85	3.6	0.47	0.078	32.12

LONG-TERM BIOMONITORING PROGRAM: VERTICAL FLUX VFXSEDS (description of particles in the surface 1 cm of the sediment column)

STATION	DATE	PC (%)	PN (%)	ዋዋ (ኚ)	CHLORO (mg/m2)
TOM PT	23JULYB4	3.39	0.43	0.090	19.6
	30JULY84	3.67	0.47	0.083	17.0
	7AU684	3.53	0.44	0.078	19.2
	14AUG84	3.43	0.40	0.073	17.7
	22AU684	3.83	0.49	0.089	18.5
	30AU684	3.28	0.41	0.077	13.2
R-78	17SEPT84	ND	ND	ND	ND
	24SEP184	3.05	0.32	0.087	5.7
	40CTB4	3.33	0.37	0.078	6.04
	30NOV84	1.83	0.14	0.053	5.38
	17DEC84	3.49	0.39	0.122	8.62
	19FEB85	3.65	0.38	0.085	12.13
	5MAR85	3 . 28	0.43	0.101	11.93
	1APR85	3.63	0.42	0.101	57.1
	15APR85	2.75	0.25	0.061	21
	7HAY85	ND	ND	ND	ND
	27MAY85	5.65	0.32	0.061	11.22
	5JUNE85	4.12	0.47	0.136	38.24
	18JUNE85	4.11	0.42	0.1	40.99
	27JUNE85	3.83	0.48	0.087	26

Data Table No. 8-1

LONG-TERM BIOMONITORING PROGRAM; VERTICAL FLUX PROGRAM

VFXDEPO (deposition rate of particulate to the top of the sediment trap cup at deployment depth)

STATION	DATE Deploy	TIME DEPLOY	DATE RETRIEVE	TIME RETRIEVE	TOTAL TIME (days)	TOTAL DEPTH (m)	CUP DEPTH (m.)	SESTON (g/s2/d)	PC (ag/a2/d)	PN (mg/m2/d)	/ PP (mg/m2/d)	CHLDRD (mg/m2/d)
TOM.PT	23-7-84	1315	30-7-84	1455	7.06	15.50	4.20	16.40	836.08	125.18	28.92	6.95
					7.06	15.50	4.20	18.46	940 .98	129.73	2 B. 30	7.73
					7.06	15.50	4.20	10.98	468.96	67.70	15.62	3.28
					7.06	15.50	4.20	12.54	654.79	93.94	16.74	5.18
					7.06	15.50	9.20	23.11	1063.77	147.49	38,92	10.39
					7.06	15.50	9.20	26.39	1184.54	158.35	40.00	11.15
					7.06	15.50	9.20	25.09	1163.97	157.60	39.23	9.53
					7.06	15.50	9.20	28.28	1144.75	143.14	40,25	B. 37
					7.06	15.50	14.30	351.97	17667.97	2365.50	367.76	82.64
					7.06	15.50	14.30	422.2B	20802.11	2791.64	461.40	98.49
					7.06	15.50	14.30	376.87	18673.40	2556.33	412.14	95,22
TOM. PT	30-7-84	1510	7-8-84	1100	7.90	16.00	4.70	8.39	865.27	81.95	12.89	2.67
				7.90	16.00	4.70	8.65	493.55	71.35	15,83	3.35	
					7.90	16.00	9.70	17.91	988.39	140.00	30.06	3.07
					7.90	16.00	9.70	20.97	903.14	120.80	30.94	8.71
				7.90	16.00	14.80	312.92	14209.64	1898.53	326.37	58.11	
				7.90	16.00	14.80	285.58	14150.12	1894.85	320,56	61.76	
TOM. PT	7-8-84	1100	14-8-84	1030	7.00	16.20	4.90	8.68	689.41	106.3B	19.33	2.16
					7.00	16.20	4.90	10.45	713.77	103.73	21.42	2.62
					7.00	16.20	9.90	13.BO	755.93	106.86	21.03	3.24
					7.00	16.20	9.90	13.00	724.58	94.93	20.86	3.14
					7.00	16.20	15.00	209.68	103 89.6 9	1401.9B	219.61	26.67
					7.00	16.20	15.00	192.11	9870.91	1328.21	211.96	23.89
TOM. PT	1 4- 8-84	1045	22-B-B4	1200	8.08	16.20	4.90	15.50	1012.12	154.25	33.35	4.23
					8.08	16.20	4.90	15.57	1025.26	143.93	31,25	3.57
					B.08	16.20	9.90	17.80	692.42	99.12	34.96	3.17
					8.08	16.20	9.90	16.29	687.25	96.58	19.60	2.96
					8.08	16.20	15.00	253.70	12829.32	1790.90	282.07	31.65
					B.08	16.20	15.00	271.68	12759.04	1784.98	261.29	30.98
TOM.PT	22-8-84	1200	30 -8-84	1113	7.96	15.35	2.48	10.69	949.16	162.66	25.46	3.58
					7.96	15.35	2.48	10.47	923.37	156.04	28.98	2.80
					7.96	15.35	7.77	19.95	1017.82	153.07	28.21	2.69
					7.96	15.35	7.77	22.04	1031.04	154.50	26.89	2.68
					7.96	15.35	13.52	310,22	15980.69	2096.68	346.47	26.99
					7.96	15.35	13.52	344.93	16139.16	2111.23	342.50	28.59

STATION	DATE Deploy	TIME Deploy	DATE RETRIEVE	TIME RETRIEVE	TOTAL TIME (days)	TOTAL DEPTH (m)	CUP DEPTH (m)	SESTON (g/m2/d)	PC (mg/m2/d)	PN (mg/m2/d)	PP (mg/m2/d)	CHLORO (mg/m2/d)
R-78	17SEPT84	21:00	24SEPT84	12:30	6.65	15.20	3.72	10.09	786.42	129.51	29.02	7.33
					6.65		3.72	10.03	717 .0 0	115.46	25.19	7.1(
					6.65		8.47	16.29	1066.58	150.25	39 .5 7	8.82
					6.65		8.47	17.68	1185.16	175.26	39.18	8.23
					6.65		13.35	289.41	13440.42	1848.79	506.14	29.61
					6.65		13.35	319.75	128 38. 32	1928.97	590.69	35.00
R-78	24SEPT84	12:30	400184	14:00	10.06	15.20	3.72	26.60	986. 13	129.30	36.71	3.7
					10.06		3.72	24.15	1051.71	139.84	40.11	1.50
					10.06		8.47	35.93	1577.16	208.50	61.39	5.3
					10.06		B.47	41.68	1619.25	218.57	62.61	5.76
					10.06		13.35	445.75	17972.11	2399.41	646.83	31.20
					10.06		13.35	401.63	13729.65	2010.79	596.86	25.4
R-78	40CT84	1400	160CT84	12:30	11.94	15.83	4.35	10.07	423.51	65.60	15.72	2.3
					11.94		4.35	9.94	515.19	71.32	19.05	2.3
					11.94		9.10	22.77	909.35	148.29	35.78	3.8
					11.94		9.10	20.79	946.34	144.80	33.06	4.0
					11.94		13.98	280.65	11773.61	1424.64	403.26	20.3
					11.94		13.98	293.50	114910.79	1489.76	390.77	21.2
R-79	30NDV84	12.30	17DEC84	12:30	17.00	16.25	4.77	8.62	506.30	74.73	9.65	1.7
					17.00		4.77	8.15	441.71	63.99	16.36	1.6
					17.00		9.52	20.43	880.5B	114.14	33.49	2.1
					17.00		9.52	20.33	878.69	115.19	33.69	2.3
					17.00		14.40	244.07	16525.73	3849.88	327.25	9.3
					17.00		14.40	250.52	9851.55	1242.88	341.44	17.4
R-78	19FEB85	1345	SMAR85	1200	13.95	17.40	5.92	5.28	840.54	121.99	12.20	8.6
					13.95		5.92	5.28	696.23	128.22	12.32	7.6
					13.95		10.67	10.38	882.21	129.54	19.37	7.1
					13.95		10.67	10.25	827.57	121.66	17.86	6.1
					13.95		15.55	226.69	11896.39	1560.98	299.95	44.5
					13.95		15.55	223.23	11251.29	1464.23	296.17	43.8
R-78	1 APR85	1220	LOST,NOT	RESET UN	TIL^27MAY8	5						
R-78	27MAYB5	1215	5JUNE85	1520	9.13	15.70	4.22	5.86	421.21	56.30	93.20	3.4
					9.13		4.22	5.51	445.23	50.03	94.54	2.7
					9.13		8.97	14.22	737.69	85.13	19.41	5.6
					9.13		B. 97	16.91	842.52	90.12	18.45	5.5
					9.13		13.85	249.32	11161.87	1438.68	382.39	66.3
					9.13		13.85	236 55	14427 20	1779.00	347 81	40 5

LONG-TERM BIOMONITORING PROGRAM: VERTICAL FLUX PROGRAM (VFX) VFXDEPO (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

STATION	DATE	TIME Deploy	DATE RETRIEVE	TIME Retrieve	TOTAL TIME (days)	TOTAL Depth (@)	CUP DEPTH (m)	SESTON {g/m2/d}	PC (ag/a2/d)	PN (ag/a2/d)	PP (mg/m2/d)	CHLORO (ag/a2/d)
 R-78	5JUNE85	1520	18JUNE85	1450	12.98	15.75	4.27	5.14	492.87	65.62	10.95	3.18
					12.98		4.27	5.58	487.08	60.01	9.53	3.60
					12.98		9.02	9.29	636.75	74.14	18.25	3.74
					12.98		9.02	9.39	604.17	70.55	13.99	3.93
					12.98		13.90	110.70	5422.76	650.20	176.39	16.56
					12.98		13.90	117.59	5735.46	696.08	202.74	16.56
R-78	18JUNE85	1450	27JUNE85	1130	8.86	15.80	4.32	8.37	617.70	107.42	13.56	5.23
					8.86		4.32	7.33	607.70	105.74	12.97	4.85
					8.86		9.07	10.30	783.14	122.87	16.63	5.12
					8.86		9.07	11.04	737.80	111.68	17.33	5.80
					8.86		13.95	96.14	4494.51	593.94	15.15	13.41
-70 NAT		/EY DF	PO MOI	UITORIN	8.86		13.95	96.23	4948.06	620.08	14.95	14.85
<u>n-70 mJ1</u>	REDEI	DISCON	TINUE	ATTH	IS							

STATION.

LONG-TERM BIOMONITORING PROGRAM;VERTICAL FLUX PROGRAM VFXDEPD (deposition rate of particulate to the top of the sediment trap cup at deployment depth)

STATION	DATE Deploy	TIME Deploy	DATE Retrieve	TIME Retrieve	TOTAL TIME (days)	TOTAL Depth (e)	CUP DEPTH (m)	SESTON (g/m2/d)	FC (eg/e2/d)	PN (asg/as2/d)	PP (mg/m2/d)	CHLORO (£g/\$2/d)
R-64	23-7-84	1745	30-7-84	1010	6.70	16.00	3.80	2.74	423.88	70.71	8.98	6.57
					6.70	16.00	3.80	2.68	335.91	57.98	7.00	4.54
					6.70	16.00	3.80	1.17	145.08	23.83	3.76	1.78
					6.70	16.00	3.B0	0.96	114.17	20.21	3.29	1.37
					6.70	16.00	7.80	3.97	389.14	61.53	8.31	3.78
					6.70	16.00	7.80	4.07	414.47	67.93	8.93	4.34
					6.70	16.00	7.BO	2.45	235.31	35.66	6.52	1.97
					6.70	16.00	7.80	2.08	234.46	40.28	6.30	2.45
					6.70	16.00	13.70	128.09	6506.B1	950.10	110.39	31.60
					6.70	16.00	13.70	105.77	5784.12	828.51	96.34	27.84
					6.70	16.00	13.70	108.27	5725.67	B11.07	42.58	25.89
					6.70	16.00	13.70	106.19	5896.71	836 .8 0	100.89	26.80
R-64	30-7-84	1045	7-8-84	1250	8.08	16.10	3.90	3.47	429.39	72.40	15.97	2.7
					8.08	16.10	3.90	3.78	553.94	96.21	13.16	3.1
					8.08	16.10	7.90	2.02	269.74	44.61	7.13	2.2
					8.08	16.10	7.90	2.35	239.49	38.25	6.01	1.9
					8.08	16.10	13.80	42.39	2350.97	353.4B	45.53	12.4
					8.08	16.10	13.80	42.82	2288.54	345.94	46.07	12.0
R-64	7 - 8-84	1230	14-8-84	1230	7.00	16.50	4.30	2.68	531.16	86.07	13.44	1.9
					7.00	16.50	4.30	2.67	499.75	81.21	11.45	1.8
					7.00	16.50	8.30	3.40	438.07	70.26	9.51	2.10
					7.00	16.50	8.30	3.47	468.01	74.03	9.63	2.20
					7.00	16.50	14.20	20.80	1522.78	227.26	29.45	5.54
					7.00	16.50	14.20	26.76	1625.40	240.23	31.52	5.7
R-64	14-8-84	1230	22-8-84	910	6.90	16.80	4.60	6.95	745.93	130.14	19.82	2.7
					6.90	16.80	4.60	6.99	756.30	131.96	20.21	2.7
					6.90	16.80	B. 60	B.14	549.B4	B7.2 1	13.09	2.4
					6.90	16.80	8.60	7.95	541.07	85.18	11.57	2.0
					6.90	16.B0	14.50	62.56	3330.23	497.24	60.B8	9.9
					6.90	16.80	14.50	63.31	2913.58	460.09	55.30	8.8
R-64	22-8-84	910	30-B-B4	1400	B. 21	16.80	4.60	16.76	1928.58	373.12	56.95	6.6
					8.21	16.80	4.60	10.71	1449.08	257.69	35.48	4.3
					B.21	16.80	B. 60	10.19	844.04	150.69	20.26	2.2
					8.21	16.80	B.60	9.75	812.06	140.29	20.26	2.5
					B.21	16.80	14.50	193.54	8416.27	1260.23	160.00	18.6
					8.21	16.80	14.50	192.75	8334.28	1236.18	157.14	18.6

LONG-TERM BIDMONITORING PROGRAM: VERTICAL FLUX PROGRAM (VFX) VFXDEPO (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

STATION	DATE Deploy	TIME DEPLOY	DATE Retrieve	TIME RETRIEVE	TOTAL TIME (days)	TOTAL DEPTH (m)	CUP DEPTH (m)	SESTON (g/m2/d)	PC (mg/m2/d)	PN (mg/m2/d)	PP (mg/m2/d)	CHLDRD (mg/m2/d)
R-64	175EPT84	1813	245EPT84	0921	6.63	17.70	4.26	5.40	600.23	98.77	12.66	5.70
					6.63		4.26	5.42	584.95	94.16	11.22	5.90
					6.63		8.52	7.86	587.41	95.74	11.26	5.36
					6.63		8.52	6.91	607.86	90.72	11.72	5.48
					6.63		15.44	116.70	5955.38	872.89	126.62	20.67
					6.63		15.44	121.37	6294.38	961.74	131.01	28 .9 0
R-64	24SEPT84	09 30	40CT84	1030	10.04	17.50	4.16	10.57	499.31	79.11	16.34	3.51
					10.04		4.16	15.73	491.21	76.71	16.34	3.72
					10.04		8.42	22.72	992.14	152.27	19.40	3.87
					10.04		8.42	27.78	742.28	126.13	20.27	4.53
					10.04		15.34	270.67	10518.54	1461.68	220.44	24.96
					10.04		15.34	314.53	11813.27	1641.30	259.00	29.80
R-64	40CT84	1030	160CT84	2115	12.45	17.60	4.62	6.13	483.02	78.66	12.61	6.0B
					12.45		4.62	5.72	485.32	76.89	14.23	6.74
					12.45		9.67	9.44	611.45	91.33	15.22	4.89
					12.45		9.67	10.42	598.46	87.45	15.06	5.36
					12.45		15.05	153.73	5648.88	799.26	161.01	18.93
					12.45		15.05	154.65	5500.31	758.63	145.21	17.04
R-64	30NOV84	0945	17DEC84	LOST					•			
R-64	19FEB85	0930	5MAR85	0900	13.98	18.60	5.62	1.64	324.75	57.60	3.83	3.21
					13.98		5.62	1.97	377.52	53.83	5.58	3.26
					13.98		10.67	4.96	675.60	97.90	11.98	5.13
					13.98		10.67	5.02	648,54	107.17	8.16	5.07
					13.98		16.05	96.50	5126.45	665.92	94.75	35.33
					13.98		16.05	92.36	4946.67	672.46	97.26	28.49
R-64	1APRIL85	0915	15APRIL85	5 1000	14.03	17.70	4.72	5.63	879.98	111.70	11.07	16.98
					14.03		4.72	7.00	993.71	130.15	10.63	19.83
					14.03		9.77	13.19	1060.15	199.05	20.01	12.13
					14.03		9.77	11.75	1074.44	163.73	14.51	18.69
					14.03		15.15	57.52	2908.98	524.91	58.15	21.97
					14.03		15.15	59.65	2556.70	443.04	53.14	15.26
R-64	15APRIL8	5 1015	30APRIL85	5 TRAP	LOST	17.70						
R-6 4	30APRIL8	5 1020	BMAY85	1130	8.05	17.60	4.62	3.90	760.9B	94.00	3.04	8.01
					8.05		4.62	4.99	768.96	99.31	9.26	8.11
					8.05		9.67	17.87	1229.14	1 B2. 97	22.56	11.93
					8.05		9.67	18.03	1097.66	163.39	21.25	9.95
					B.05		15.05	93.71	11031.36	1650.62	102.43	32.57
					8.05		15.05	99.57	14294.71	2090.20	104.26	35.01

LONG-TERM BIOMONITORING PROGRAM: VERTICAL FLUX PROGRAM (VFX) VFXDEPO (Deposition rate of particulates to the top of the sediment trap cup at deployment depth) _____ DATE CUP TIME DATE TIME TOTAL TOTAL PP CHLORD DEPTH PC PN STATION DEPLOY DEPLOY RETRIEVE RETRIEVE TIME DEPTH SESTON (mg/m2/d) (mg/m2/d) (mg/m2/d) (mg/m2/d) (<u>m</u>) (g/s2/d) (days) (**m**) 462.90 76.1B 83.50 4,45 9.35 17.05 4.07 3.47 27NAY85 0900 5JUNE85 1730 R-64 4.07 2.12 489.59 89.74 81.76 4.89 9.35 3.30 9.35 9.12 3.66 372.55 55.73 69.43 9.12 3.89 432.22 61.54 74.12 3.86 9.35 34.71 41.28 7.60 14.50 1660.30 222.35 9.35 247.96 41.28 9.64 14.50 35.84 1763.86 9.35 327.52 44.79 4.77 2.74 17.00 4.02 2.97 5JUNEB5 1740 18JUNE85 1015 12.69 R-64 4.02 3.94 491.34 77.63 6.64 2.66 12.69 9.07 5.25 460.65 60.62 6.43 4.71 12.69 4.96 75.07 7.47 12.69 9.07 4.91 507.93 8.99 184.98 31.80 14.45 39.6B 1541.77 12.69 30.42 14.45 38.57 1555.39 190.37 8.83 12.69 4,40 83,85 8.83 R-64 18JUNE85 1025 25JUNE85 17.25 4.27 6.78 527.65 7.25 1630 4.96 733.82 129.22 11.25 6.33 7.25 4.27 7.25 9.32 6.05 617.43 100.18 9.68 5.05 756.33 116.64 10.16 5.81 7.25 9.32 6.17 39.93 B.82 1596.26 232.06 7.25 14.70 30.91 32.12 8.37 2032.20 286.75 ND 7.25 14.70 11.57 2.83 15.77 17.5 4.52 4.23 562.59 91.06 25JUNE85 1700 11JULY85 1130 R-64 514.25 78.15 9.46 3.59 15.77 4.52 4.45 6.73 2.89 15.77 9.57 9.07 414.96 61.63 63.17 12.60 2.80 448.82 15.77 9.57 8.32 68.B4 13.89 15.77 14.95 100.12 B6.36 443.55 0.001* 5.54 106.20 9.48 637.46 R-64 11JULYB5 1210 24JULYB5 1105 12.96 17.5 4.52 634.35 117.03 0.00 5.82 4.52 18.88 12.96 0.00 4.28 12.96 9.57 16.45 634.35 105.32 0.00 3.76 14.69 662.50 116.0B 12.96 9.57 0.00 21.86 215.24 7718.48 1044.04 12.96 14.95 881.94 0.00 21.52 14.95 203.39 6437.20 12.96 10.25 6.01 17.15 4.17 8.54 997.47 184.05 0.00 24JULY85 1130 30JULY85 1140 R-64 149.46 0.00 9.87 10.95 814.15 6.01 4.17 9.22 18.10 1243.55 225.36 0.00 10.95 6.01 0.00 10.84 191.64 6.01 9.22 16.20 1110.00 21.89 102.17 3737.22 563.54 0.00 6.01 14.60 522.23 0.00 23.06 92.54 3488.51 6.01 14.60

> * DATA NOT YET AVAILABLE

ECOSYSTEM PROCESSES

ST LEONARD AUG. 1984

7.00

concentration vs time plots of oxygen and nutrients obtained from sediment microcosms used in SONE monitoring. See Data Table No.4 for tabular data and Data Table 5 for calculated flux data

· ·

HORN PT AUG.1984

ECOSYSTEM PROCESSES

WINDY HILL AUG.1984

_

٠.

ECOSYSTEM PROCESSES

۰.

ND.PT.AUG.1984

.

).60

٥.50

0.40

3.30

0.00

80.00

GREEN

40.00

n

PT.NO PT.AUG 1984

280.00 320.00

120.00 160.00 200.00 240.00

BLACK

٠

TIME, minutes

TIME, minutes

٠

BLACK

ECOSYSTEM PROCESSES

THOMAS PT AUG 1984

No. 9-11

OXYGEN.mg/l

No. 9-13

.....

No. 9-14

No. 9-15

OXYGEN.mg/1

No. 9-16

No. 9-17

~

No. 9-19

No. 9-20

OXYGEN.mg/l

No. 9-21

. .

NH4/UM-N

No. 9-24

No. 9-25

_

_

(

_

No. 9-27

_

NH4.UM-N

.

No. 9-31

(

-

,

~

(

•••

~

-

No. 9-41

No. 9-42

No. 9-43

DIP/um-p

~

No. 9-47

~

No. 9-50

· · · ·

No. 9-51

~

No. 9-53

, .

 $\widehat{}$

At time of scanning $1/16/2007\,,$ no page was found for No. 9-54

.

No. 9-56

No. 9-57

NO .

SI(OH)4/uM-Si

No.9-59

No. 9-61

No. 9-62

No. 9-63

No. 9-64

No. 9-65

No. 9-66

No. 9-72

No. 9-74

No. 9-75

No. 9-76

÷

No. 9-77

No. 9-78

....

>

2 **1** 4

· · }

۰. ۲

i,

i

No. 9-84

No. 9-85

INO .

No. 9-86

~

No. 9-87

الد ال

7

NO.

No. 9-91

At time of scanning 1/16/2007, no page was found for No. 9-92

No. 9-93

No. 9-94

No. 9-95

No. 9-96

DIP/uM-P

No. 9-97

DIP/uM-P

3,412720

No. 9-105

No. 9-106

č

1

No. 9-107

NO I

No. 9-108

SI(OH)4/uM-SI

No. 9-109

÷

No. 9-112

1

. .

No. 9-113

No. 9-114

No. 9-116

No. 9-117

فتر ربط

No. 9-118

OXYGEN.mg/l

No. 9-120

.....

No. 9-121

. (

No. 9-122

-

No. 9-124

No. 9-125

No. 9-126

INC

No. 9-130

1

No. 9-134

-

No. 9-139

.

No. 9-142

,------

No. 9-144

· · ·

.

No. 9-148

No. 9-152

SI(OH)4∕uM−Si

No. 9-154

SI(OH)4/uM-SI
No. 9-155

DATA TABLE NO. 10-1

COMPOSITION RATIOS OF PARTICULATE MATERIAL IN SEDIMENT TRAP CUPS

	DATE	CUP				*******	
STATION	RETRIEVE	DEPTH	C:N	N:P	C:P	C:SES	C:CHL
		(m)	(atomic)	(atomic)	(atomic)	(xgt)	(wgt)
TCM.FT	30-7-84	4.20	7.79	11.18	74.69	50.98	120.34
		4.20	8.46	11.84	85,91	50.96	121.67
		4.20	8.08	11.19	77.54	42.71	143.18
		4.20	8.13	14.49	101.03	52.21	126.38
		9.20	8.41	9.79	70.61	45.02	102.42
		9.20	8.73	10.23	76.50	44.88	196.25
		9.20	8.62	10.38	76.65	46.39	122.10
		9.20	9.33	9.19	73.48	40.48	136.77
		14.30	8.71	16.62	124.11	50.20	213.80
		14.30	8.69	15.63	116.47	49.26	211.22
		14.30	8.52	16.02	117.05	49.55	196.10
Ton.PT	7-8-84	4.70	12.32	16.43	173.44	103.14	324.21
		4.70	B. 07	11.65	80 .55	57.06	147.34
		9.70	8.24	12.03	84.94	55.17	322.22
		9.70	8.72	10.09	75.41	43.07	163.65
		14.80	8.73	15.03	112.47	45.41	244.53
		14.80	8.71	15.27	114.03	49.55	229.13
TOX.PT	14-8-84	4.90	7.56	14.22	52.14	79.40	319.27
		4.90	8.03	12.51	86.07	£8.27	272.33
		9.90	8.25	13.13	92.87	54.76	233.29
		9.90	8.90	11.76	89.74	55.74	230.55
		15.00	· 8.65	15.47	122.22	19.55	389.58
		15.00	8.67	16.19	129.31	51.38	413.23
TOM.PT	22-8-94	4.90	7.66	11.95	78.40	65.29	239.05
		4.90	8.31	11.90	84.76	65.87	287.49
		9.90	8.15	7.32	51.17	38.29	218.42
		9.90	8.30	12.73	90.59	42.18	231.91
		15.00	B.3£	16.40	117.50	50.57	405.40
		15.00	8.34	17.65	126.15	45.96	411.88
TOK. FT	3(- 8- 84	2.48	6.81	16.51	P6.32	ES.79	265.02
		2.48	6.90	13.91	82.30	39.20	3/29.68
		7.77	7.76	14.02	93.20	51.03	379.52
		7.79	2.75	14.24	93. vá	4:178	
		12.51	5.57	15.23	119.15	5	
		13.52	8.92	15.92	121.73	46.79	5:4.53

1

	DATE	. CUP							
STATION	RETRIEVE	DEPTH	C:N	N:P	C:P	C:SES	C:CHL		
		(g)	(atomic)	(atomic)	(atomic)	(kgt)	(wgt)		
8-78	24SEPT84	3.72	7.08	9.88	70.01	77.93	107.23		
		3.72	7.24	10.15	73.52	71.52	101.03		
		8,47	B.28	8,41	69.63	65.47	120.86		
		8.47	7.89	9.91	78.15	67.05	143.98		
		13.35	8,49	8.09	68.60	46.44	453.86		
		13.35	7.76	7.23	56.15	40.15	366.85		
									
R-78	400184	3.72	8.90	7.80	69.40	37.08	256.10		
		3.72	B.//	7.12	6/.74	43.54	673.82		
		8.47	8.93	7.52	66.37	43.90	297.00	•	
		8.47	8.64	7.73	66.81	38.85	283.95		
		13.35	8.74	8.21	71.78	40.32	574.92		
		13.35	7.97	7.46	59.42	34.18	540.16		
R-73	1500784	4.35	7.53	9.24	69.59	42.08	182.42		
•		4.35	8.43	8.79	69.84	51.83	220.69		
		9,10	7.15	9 19	65.64	35 97	238.47		
		Q 10	7.13	0 7A	77 65	15 50 15 50	20010) 974 75		
		17 00	7.01 G LA	7.20	75 87	61 05	575 75		
		10.70	1.04	7.64 D.44	750 11	1117J 701 ED	J/5./J FA(3 /A		
		13.76	67.77	D.44	137.00	371.32	3417.04		
8-18	170EC84	4.77	7.90	17.15	135.55	59.75	290.30		
		4.77	8.05	8.66	69.76	54.18	274.37		
		9.52	9.00	7.55	67.93	43.09	412.21		
		9.52	8.50	7.57	67.37	43.22	379.26		
		14.40	5.01	26.05	130.46	£7.71	1759.70		
		14.40	9.25	8.06	74.54	39.32	564.86		
0_70	SWADOS	5 02	0 04	22 18	170 00	150 17	67 57		
n-76	JUMPOJ	J,74 15 01	0.09	22.19 07 AB	1/5.00	137.13	7/.J/ 00 35		
		3.72	0.00	20.04	193.73	131.51	90.75		
		10.5/	7.73	14.81	11/.5/	53.03	124.10		
		10.6/	/.54	10.09	117./1	50.74	134.02		
		13.33	8.57	11.52	102.46	32.48	26/.21		
		15.55	8.95	10.95	98.14	50.40	256.71		
		ም ቭርር	TAT	His L	OCAT	onl:	New Loca	Tion is	; ;
:	LUDIANUI	17							
F-73	500MEE5	4.21	8.73	1.34	11.58	71.27	327.15		
		4.22	10.35	1.17	12.17	60.73	160.32		
		8.º7	10.11	9.71	72.19	51.98	131.02		
		8.97	10.51	10.82	117.99	49.82	151.45		
		13.85	9.65	i 8.33	75.41	44.77	168.29		
		13.85	9.45	11.53	107.16	66.99	355.66		
	10100000					65 D.	155 45		
5	12300582	4.27	E./e	15.27	116.30	70.75	155.17		
		4.27	Y.51	15.95	152.59	21.12	135.78		
				1 I			1 / (
				. 7.L.					
		-	. 10.34 9,5	. .	111.57	24.77	157.87		

ŝ

DATA TABLE NO. 10-3

	DATE	CUP					
STATION	RETRIEVE	DEPTH	C:N	N:P	C:P	C:SES	C:CHL
		(=)	(atomic)	(atomic)	(atomic)	(wgt)	(wgt)
R-64	30-7-84	3.80	6.99	20.34	121.95	154.50	64.50
		3.80	6.76	21.41	124.04	125.18	73.9B
		3.60	7.10	16.38	99.73	123.90	81.34
		3.80	6.59	15.85	89.52	118.81	83.17
		7.80	7.38	19.12	120 .92	98.09	103.01
		7.80	7.12	19.66	119.96	101.80	95.58
		7.80	7.70	14.12	93.18	95.97	119.51
		7.80	6.79	16.51	96.09	112.95	133.24
		13.70	7.99	22.23	152.27	50.80	205.90
		13.70	B.14	22.22	155.10	54.69	207.78
		13.70	8.24	49.21	347.37	52.88	221.15
		13.70	8.22	21.43	150.99	55.53	220.07
R-64	7-8-84	3.70	6.92	11.72	69.48	123.88	155.24
		3.90	6.72	18.89	108.76	146.62	175.34
		7.90	7.05	16.17	97.80	133.54	-119.44
		7.90	7.30	16.43	102.89	101.75	125.21
		13.80	7.75	20.06	133,41	55.47	189.67
		13 . E0	7.72	17.40	125.34	53.45	190.18
R-64	14-9-34	4.30	7.20	16.54	- 102.10	198.17	270.58
		4.30	7.18	18.33	112.78	187.10	270.97
		8.30	7.27	19.10	119.06	128.70	208.59
		8.30	7.38	19.87	125.61	134.73	207.28
		14.20	7.82	19.93	133.57	73.20	274.87
		14.20	7.89	19,69	133.20	60 .75	280.65
R-:4	22-8-84	4.60	5.69	16.96	97.21	107.31	272.07
		4.60	6.69	16.86	56.66	168.16	274.15
		8. 60	7.36	17.21	108.47	67.58	228.84
		8.¿Û	7.41	15.02	120.82	68.10	266.00
		14.59	7.81	21.10	141.30	53.23	335 .5 6
		14.50	7.39	21.49	136.10	46.92	329.29
R-64	30-8-94	4.60	6.03	16.93	87.49	115.10	288.22
		4.60	6.55	18.76	105.50	135.30	333.21
		8.80	6.53	19.21	107.52	E2.37	372.32
		8.20	6.75	17.59	100.54	83.31	318.24
		14 -	• 7.79	20.35	175.00	17,19	270,85
		13.EC	7.87	20.32	157.02	47.74	246.27

2727104	DATE	CUP	C+N	N. P	- C+P	C. 955	C+CHI
695 IVN		(g)	(atopic)	(atceic)	(atomic)	(wgt)	(wgt)
R-78	27 JUNE 85	4.32	6.71	17.54	117.65	73.83	118.16
		4.32	6.71	19.05	121.04	92.95	125.27
		9.07	7.44	16.36	121.63	76.06	153.00
		9.07	7.71	14.27	110.01	66.83	127.17
		13.95	8,93	\$6.82	766.49	46.75	335.27
		13.95	9.31	91.84	855.01	51.42	333.18
R-78 NGT	RESET	· ·					

NO FURTHER SAMPLING AT R-78

K-54	24SEPT84	4.26	7.09	17.27	122.46	111.19	105.26
		4.26	7.25	18.58	134.68	107.83	99.13
		8.52	7.16	18.83	134.77	74.74	109.62
		8.52	7.82	17.14	133.96	88.01	110.97
		15.44	7.96	15.26	121.50	51.03	288.17
		15.44	7.64	16.25	124.11	51.86	217.83
R-54	400184	4.16	7.36	10.72	78.95	47.23	142.16
		4.15	7.47	10.40	77.67	31.23	131.97
		E.42	7.60	17.38	132.14	43.6B	252.33
		8.42	6.87	13.78	94.60	20.72	163.70
		15.34	8.40	14.68	123.27	38.86	421.39
		15.34	8.40	14.03	117.63	37.56	396.39
R-c4	1600184	4.52	7.16	13.81	98.94	78.80	79.44
		4.62	7.36	11.96	83.09	84.83	72.05
		9.67	7.81	13.29	103.79	64.76	125.05
		9.67	7.98	12.86	102.65	57.42	111.69
		15.05	8.25	10.77	90.63	36,74	278.47
		15.05	B.46	11.57	97.85	35.57	322.72
8-:4	17DEC24	TEI	4P 20	ST			
	FWADGE	5 42	1 5.0	27 77	710 10	157.54	101.28
K-24	JUNKOJ	0.01	0.00	00.01	417+17		
K-24	JUNEOJ	5.52	8.18	21.34	174.64	191.61	115.70
K-27	000000	5.52 10.67	8.18 8.05	21.34 1E.09	174.64	191.61	115.70 131.63
K-24	3118163	5.52 10.67 10.67	8.18 8.05 7.06	21.34 1E.09 29.09	174.64 145.63 265.39	191.61 136.29 129.20	115.70 131.63 127.92
K-24	JUNE J	5.52 10.67 10.67 16.05	8.18 8.05 7.06 8.98	21.34 1E.09 29.09 15.56	174.64 145.63 205.39 139.77	191.61 136.29 129.20 53.12	115.70 131.63 127.92 145.12
K-27	319863	5.62 10.67 10.67 16.05 16.05	8.18 8.05 7.06 8.98 8.58	21.34 1E.09 29.09 15.56 15.31	174.64 145.63 205.39 139.77 131.39	191.61 136.29 129.20 53.12 53.56	115.70 131.63 127.92 145.12 173.65
K-04	154FR0125	5.62 5.62 10.67 16.67 16.05 16.05 16.05	5.35 5.18 5.05 7.06 8.98 6.58	21.34 1E.09 29.09 15.56 15.31	215.15 174.64 145.63 205.39 139.77 131.39 205.42	191.61 136.29 129.20 53.12 53.56	115.70 131.63 127.92 145.12 173.65
K-24	154FR3125	5.62 5.62 10.67 16.67 16.05 16.05 16.05 16.05	5.35 5.18 5.05 7.06 8.98 6.58 5.23 5.21	21.34 1E.09 29.09 15.56 15.31 22.35 27.11	215.15 174.64 145.63 205.39 139.77 131.39 205.42 241.57	191.61 136.29 129.20 53.12 53.56 154.38 141.91	115.70 131.63 127.92 145.12 173.65 51.82 59.11
r~:4	154FR3125	5.62 5.62 10.67 10.67 16.05 16.05 16.05 4.72 4.72 4.72	5.35 5.18 5.05 7.06 8.98 6.58 5.19 5.21 5.21	21.34 1E.09 29.09 15.56 15.31 22.35 27.11 22.03	215.15 174.64 145.63 205.39 139.77 131.39 205.42 241.57 136.65	191.61 136.29 129.20 53.12 53.56 156.38 141.91 20.75	115.70 131.63 127.92 145.12 173.65 51.82 50.11 87.40
r-:4	1545R1125	5.62 5.62 10.67 10.67 16.05 16.05 16.05 4.72 4.72 4.72 4.72 9.77	5.35 5.18 5.05 7.06 8.98 6.58 5.19 5.21 5.21 7.56	21.34 1E.09 29.09 15.56 15.31 22.35 27.11 22.03 24.99	215.15 174.64 145.63 205.39 139.77 131.39 205.42 241.59 136.85 191.35	191.61 136.29 129.20 53.12 53.56 151.38 141.91 20.75 91.41	115.70 131.63 127.92 145.12 173.65 51.82 59.11 83.40 57.49
r-14 7-12	1545R3125	5.62 5.62 10.67 16.65 16.05 16.05 4.72 4.72 4.72 4.72 9.77 15.15	8.35 8.18 8.05 7.06 8.98 8.58 9.19 9.21 9.21 7.66 6.47	21.34 1E.09 29.09 15.56 15.31 22.35 27.11 22.03 24.99 19.99	245.15 174.64 145.63 205.39 139.77 131.39 205.42 241.57 131.85 191.35 129.24	191.61 136.29 129.20 53.12 53.56 154.35 141.91 90.75 91.41 50.57	115.70 131.63 127.92 145.12 173.65 51.82 59.11 87.49 132.40
r~:4	1545R3125	5.62 5.62 10.67 10.67 16.05 16.05 4.72 4.72 4.72 4.72 5.77 9.77 15.15 15.15	8.38 8.18 8.05 7.06 8.98 8.58 9.19 5.21 5.21 7.56 6.47 6.73	21.34 1E.09 29.09 15.56 15.31 22.35 27.11 22.03 24.99 19.99 18.46	215.15 174.64 145.63 205.39 139.77 131.39 205.42 241.59 135.85 191.35 125.24 124.28	191.61 136.29 129.20 53.12 53.56 155.38 141.91 90.75 91.41 50.57 42.96	115.70 131.63 127.92 145.12 173.65 51.82 59.11 83.40 57.49 132.40 157.59
r-14 7-12	304PE1125	5.62 10.67 10.67 16.05 16.05 16.05 4.72 4.72 4.72 4.72 4.72 4.72 5.15 15.15 15.15	B. 35 B. 18 B. 05 7. 06 B. 98 B. 58 9. 19 E. 21 7. 56 6. 47 6. 73 P. LO	21.34 1E.09 29.09 15.56 15.31 22.35 27.11 22.03 24.99 19.99 19.46	205.42 241.57 139.77 131.39 205.42 241.57 131.89 131.89 131.89 131.89 191.35 127.24 124.28	191.61 136.29 129.20 53.12 53.56 155.38 141.91 90.35 91.41 50.57 42.96	115.70 131.63 127.92 145.12 173.65 51.82 59.11 87.40 57.49 132.40 157.59
r-24 F-24 F-24	JOAPEJLES BMAYSS	5.62 5.62 10.67 16.65 16.05 16.05 4.72 4.72 4.72 5.15 15.15 TR 4.62	8.35 8.18 8.05 7.06 8.98 8.58 9.19 9.21 7.56 8.47 6.73 9.45	21.34 1E.09 29.09 15.56 15.31 22.35 27.11 22.03 24.99 19.99 19.46	245.15 174.64 145.63 205.39 139.77 131.39 205.42 241.57 135.85 191.35 127.24 124.28 646.62	191.61 136.29 129.20 53.12 53.56 155.35 141.91 90.35 91.41 50.57 42.86	115.70 131.63 127.92 145.12 173.65 51.82 59.11 97.49 132.40 157.59 55.01
r-14 F-14 S-14	304PE1125 304PE1125 304YE5	5.62 5.62 10.67 10.67 16.05 16.05 4.72 4.72 4.72 4.72 5.15 15.15 TP 4.62 4.52	B. 35 B. 18 B. 05 7. 06 B. 98 B. 58 9. 19 E. 21 7. 56 6. 47 6. 73 9. 45 9. 03	21.34 1E.09 29.09 15.56 15.31 22.35 27.11 22.03 24.99 14.99 14.99 15.46 23.74	215.15 174.64 145.63 205.39 139.77 131.39 205.42 241.57 131.85 191.35 129.24 124.28 646.62 214.47	191.61 136.29 129.20 53.12 53.56 155.38 141.91 90.35 91.41 50.57 42.96 195.07 -54.09	115.70 131.63 127.92 145.12 173.65 51.82 59.11 87.40 57.49 132.40 157.59 55.01 94.85
R-14 R-14 C-14	JOAPEJLES 30APEJLES 3MAYES	5.62 5.62 10.67 10.67 16.05 16.05 16.05 4.72 4.72 4.72 9.77 15.15 15.15 TZ 4.62 4.62 1.67	B. 35 B. 18 B. 05 7. 06 B. 98 B. 58 5. 21 7. 56 6. 47 6. 73 9. 45 9. 03 7. 54	21.34 1E.09 29.09 15.56 15.31 22.35 27.11 22.03 24.99 19.99 19.46 25.74 23.74 17.5=	215.15 174.64 145.63 205.39 139.77 131.39 205.42 241.57 132.85 191.35 125.24 124.28 646.62 214.47 1-0.77	191.61 136.29 129.20 53.12 53.56 156.38 141.91 90.35 91.41 50.57 42.96 195.07 -154.09 66.75	115.70 131.63 127.92 145.12 173.65 51.82 50.11 97.49 132.40 157.59 55.01 94.85 107.01
r-24 F-24 S-24	JOAPEJLES BMAYSS	5.62 5.62 10.67 16.65 16.05 16.05 16.05 4.72 4.72 4.72 5.15 15.15 TR 4.62 4.62 5.67 5.67 5.65	B. 35 B. 18 B. 05 7. 06 B. 98 B. 58 9. 17 5. 21 7. 56 6. 47 6. 73 9. 45 9. 03 7. 54 7. 94	21.34 1E.09 29.09 15.56 15.31 22.35 27.11 22.03 24.99 19.99 19.99 18.46 23.74 17.5= 17.63	215.15 174.64 145.63 205.39 139.77 131.39 205.42 241.57 131.85 131.35 131.35 129.24 124.28 646.62 214.47 140.77 133.45	191.61 136.29 129.20 53.12 53.56 156.38 141.91 90.76 91.41 50.57 42.96 195.07 42.96	115.70 131.63 127.92 145.12 173.65 51.82 50.11 87.40 57.49 132.40 157.59 55.01 94.85 107.01

DATA TABLE NO. 10-5

	DAIE	CUP				*****	
STATION	RETRIEVE	DEPTH	C:N	N:P	C:P	C:SES	C:CHL
		(s)	(atomic)	(atomic)	(atomic)	(wgt)	(wgt)
R-64	5JUNE85	4.07	7.09	2.02	14.32	133.35	104.09
		4.07	6.36	2.43	15.47	231.16	100.20
		9.12	7.80	1.78	13.86	101.82	112.81
		9.12	8.19	1.84	15.07	111.01	112.09
		14.50	8.71	11.93	103.90	47.83	218.48
		14.50	8.39	13.30	111.54	49.77	185,14
R-54	18JUNE85	4.02	8.53	20.80	177.39	110.19	119.65
		4.02	7.38	25.90	191.27	124.70	184.62
		9.07	8.87	20.88	185.11	87.68	97.86
		9.07	7.89	22.27	175.76	103.49	102.34
		14.45	9.72	12.88	125.26	38.86	171.57
		14.45	9.53	13.86	132.11	40.32	176.06
R-64	25JUNE85	4.27	7.34	21.02	154.33	77.88	119.81
		4.27	6.63	25.43	16 8.4 7	147.93	115.97
		9.32	7.19	22.92	164.78	102.06	122.37
		9.32	7.57	25.41	192.24	122.57	130.23
		14.70	8.02	12.87	103.28	51.64	180,97
		14.70	8.27			63.26	242.72
R-34	11JUL ¥85	4.52	7.21	17.43	125.61	133.08	199.09
		4.52	7.68	12.30	140.49	115.56	143.11
		9.57	7.85	20.28	159.27	45.77	143.46
		9.57	B.29	11.10	. 92.02	53.92	160.33
		14.95	0.23	14.27	3.24	0.36	6.22
a							
R-64	24JULY85	4.52	7.00	٨	4	67.27	115.13
		4 - 52	6.32	1	. 1	33.59	108.98
		9.57	7.03	[I	38.57	148.29
		9.57	6.66		•	45.11	176.04
		14.95	8.63	DD.	Jata	35.95	353.05
		14.95	8.52	91. 	vot	31.65	299.07
8-+4	30300 285	<u>a</u> 17	2 70	101	701	114 69	07 7F
F1 #7	00012100	/ # 17	C.JL L 7L	avai	lable	110.52	71.30 D1 E1
		9.17	6.00 4 44			/7.3/ 10 71	02.31 117 10
		9 22	6 74			60.71 20 51	100 74
		14.40	7.74]	1	16.JI 74 50	170 70
		14.50	7.79	¥	Ý	37,74	151.07

[

.