CEES

CENTER for ENVIRONMENTAL and ESTUARINE STUDIES UNIVERSITY of MARYLAND USA

Chesapeake Bay Cheser Monitoring oudity Monitoring oudity ecosystem processes component

A Program Supported by the Office of Environmental Programs Department of Health and Mental Hygiene State of Maryland

November, 1986

MARYLAND OFFICE OF ENVIRONMENTAL PROGRAMS

MARYLAND CHESAPEAKE BAY WATER QUALITY MONITORING PROGRAM

ECOSYSTEM PROCESSES COMPONENT (EPC)

LEVEL I DATA REPORT NO. 3

(July 1985 - May 1986)

PREPARED FOR:

Office of Environmental Programs Dept. Health & Mental Hygiene State of Maryland

PREPARED BY:

W.R. Boynton¹ Principle Investigator W.M. Kemp² Principle Investigator J.H. Garber¹ Program Manager J. Barnes¹ Field Program Co-ordinator

Center for Environmental & Estuarine Studies University of Maryland

¹Chesapeake Biological Laboratory (CBL) Solomons, Maryland 20688-0038

²Horn Point Environmental Laboratories (HPEL) Cambridge, Maryland 21613-0775

1. ABSTRACT

1.1 Program Objectives

The primary objectives of the Ecosystem Processes Component (EPC) of the Maryland Chesapeake Bay Water Quality Monitoring Program are to:

- characterize the present state of the bay (including spatial and seasonal variation) relative to sediment-water nutrient exchanges and oxygen consumption and the rate at which organic and inorganic particulate materials reach deep waters and the sediment surface.
- determine the long-term trends that might develop in sediment-water exchanges and vertical deposition rates in response to pollution control programs.
- 3) integrate the information collected in this program with other elements of the monitoring program to gain a better understanding of the processes affecting Chesapeake Bay water quality and its impact on living resources.

Measurements of sediment-water nutrient and oxyen exchanges are made on a quarterly basis at four locations in the mainstem Bay, and at two key location in each of three major tributary rivers (Patuxent, Choptank, and Potomac). Vertical deposition rates are monitored at one mainstem Bay location, in the central anoxic region. Measurements are made almost continuously during the spring and summer periods, with a lower frequency during the fall and winter. Activities in this program have been coordinated with other components of the Maryland Chesapeake Bay Water Quality Monitoring Program in terms of station locations, sampling frequency, methodologies, data storage and transmission, reporting schedules and data synthesis.

1.2 Justification

Recently, it has been shown that sediment-water processes and deposition of organic matter to the sediment surface are major features of estuarine nutrient cycles and play an important role in determining water quality and habitat conditions. For example, it has been found that during summer periods, when water quality conditions are typically poorest (i.e. anoxic conditions in deep water, algal blooms), sediment releases of nutrients (e.g. nitrogen, phosphorus) and consumption of oxygen are often highest as is the rate of organic matter deposition to the deep waters of the Bay. To a considerable extent, it is the magnitude of these processes which determines nutrient and oxygen water quality conditions in many zones of the Bay. Ultimately, these processes are driven by inputs of organic. matter and nutrients from both natural and anthropogenic sources. If water quality management programs are instituted and loadings decrease, changes in the magnitude of the processes monitored in this program will serve as a guide in determining the effectiveness of strategies aimed at improving Bay water quality and habitat conditions.

2. INTRODUCTION

During the past decade much has been learned about the effects of nutrient inputs (e.g. nitrogen, phosphorus, silica), from both natural and anthropogenic sources, on such important estuarine processes as phytoplankton production and oxygen status (Nixon 1981; D'Elia et al. 1983). While our understanding is not complete, important pathways regulating these processes have also been identified and related to water quality conditions. For example, it has been shown that annual algal primary production and maximum algal biomass levels in many estuaries (including portions of Chesapeake Bay) are related to the magnitude of nutrient loading from all types of sources (Boynton et al. 1982a). It has also been found that high, and at times excessive, algal production is sustained through the summer and fall periods by the recycling of essential nutrients which had entered the estuary previous to periods exhibiting eutrophic characteristics. Similarly, sediment oxygen demand (SOD) has been found to be related to the amount of organic matter reaching the sediment surface and the magnitude of this demand is sufficiently high in many regions to be a major oxygen sink (Hargrave 1969; Kemp and Boynton 1980).

The delay between nutrient additions and the response of algal communities suggests that there are mechanisms whereby nutrients are retained in estuaries, such as the Chesapeake, and can be mobilized for use at later dates. Research conducted in Chesapeake Bay and other estuaries has shown that estuarine sediments can act as both important storages and sources for nutrients as well as important sites of intense oxygen consumption (Kemp and Boynton, 1984). For example, during summer periods in the Choptank and Patuxent estuaries, 40-70% of the total oxygen utilization was associated with sediments and 25-70% of algal nitrogen demand was supplied from estuarine sediments (Boynton et al. 1982b).

Processes of this magnitude have a pronounced effect on estuarine water quality and habitat conditions. In terms of storage, sediments in much of Chesapeake Bay, especially the upper Bay and tributary rivers, contain large amounts of carbon, nitrogen, phosphorus and other compounds. It appears that a large percentage of this material reaches the sediments during the warm periods of the year and that some portion is available to regenerative processes and hence for continued algal utilization. Nutrients, and other materials deposited or buried in sediments, represent the potential "water quality memory" of the Bay.

2.1 Justification

Processes associated with estuarine sediments have a considerable influence on water quality and habitat conditions in the Bay and it's tributaries. In a simplified fashion, nutrients and organic matter enter the Bay from a variety of sources, including sewage treatment plant effluents, fluvial inputs, local non-point drainage and direct rainfall on Bay waters. It appears that dissolved nutrients are rapidly removed from the water column via biological, chemical and physical mechanisms and much of this material then sinks to the bottom where it is remineralized. These essential nutrients are then utilized by algal communities, a portion of which in turn sink to the bottom, contributing to the development of anoxic conditions and loss of habitat for important infaunal, shellfish and demersal fish communities. The regenerative capacities and the potentially large nutrient storages in bottom sediments ensure a large return flux of nutrients from sediments to the water column and sustain continued phytoplankton growth, deposition of organics to deep waters and anoxic conditions typically associated with eutrophying estuarine systems.

It is within the context of this model that a monitoring study of deposition, sediment oxygen demand and sediment nutrient regeneration has been initiated. The rationale is that if nutrient and organic matter loading to the Bay is decreased then the cycle of deposition to sediments, sediment oxygen demand, release of nutrients and continued high algal production will also be decreased. Since these benthic processes are important in influencing water quality conditions, changes in these processes will serve as important indications as to the effectiveness of nutrient control actions.

2.2 Objectives

The primary objectives of the Ecosystem Processes Component (EPC) of the Maryland Chesapeake Bay Water Quality Monitoring Program are to:

- characterize the present state of the bay (including spatial and seasonal variation) relative to sediment-water nutrient exchanges and oxygen consumption and the rate at which organic and inorganic particulate materials reach deep waters and the sediment surface.
- determine the long-term trends that might develop in sediment wate. exchanges and vertical deposition rates in response to pollution control programs.
- 3) integrate the information collected in this program with other elements of the monitoring program to gain a better understanding of the processes affecting Chesapeake Bay water quality and its impact on living resources.

3. PROJECT DESCRIPTION

3.1 <u>Sampling Locations</u>

3.1.1 General

Sampling locations for both the sediment oxygen and nutrient exchange study (SONE) and the vertical flux study (VFX) are shown in Figure 3-1. Brief descriptions and exact locations of SONE and VFX stations are given in Table 3-1 referenced to OEP station numbers. Four of the 10 stations sampled as part of the SONE study are located along the salinity gradient in the mainstem Bay between Point No Point (north of the mouth of the Potomac River) and Still Pond Neck (20 km south of the Susquehanna River mouth). Two additional stations were located in each of three tributary rivers (Patuxent, Choptank and Potomac), one in the turbidity maximum or transition zone and one in the lower mesohaline region. The station monitored as part of the VFX study was located in the mainstem of the Bay in the central anoxic region (Fig. 3-1).

3.1.2 Justification of Station Locations

Locations of SONE stations (Fig.5-1 and Table 3-1) were selected based on prior knowledge of the general patterns of sediment-water nutrient and oxygen exchanges in Chesapeake Bay. Several earlier studies (Boynton et al. 1980, 1984 and Boynton and Kemp 1985) reported the following: 1) along the mainstem of the Bay fluxes were moderate in the upper Bay, reached a maxima in the mid-Bay and were lower in the higher salinity regions and, 2) fluxes in the transition zone of tributaries were much larger than those observed in the higher salinity downstream portions of tributaries. Hence, a series of stations were located along the mainstem from Still Pond Neck in the upper Bay to Point No Point near the mouth of the Potomac River. A pair of stations were established in three

Fig. 3-1. Locations of SONE and VFX monitoring stations in the Maryland portion of Chesapeake Bay.

Table 3. Locations and descriptions of stations sampled as part of the Ecosystem Processes Component of the Monitoring Program.

Bay Sediment	Station Name	Code Name (Nearent OEP Station)	General Location	Latitude & Longitude	Total Depth, m	Salinity Characteristics
Patuxent River	Buena Vista	Bu. Vista (XDE 9401)	0.75 naut. mi N of Rt. 231 Bridge at 40KM Benedict, MD	38°30.96 ¹ 76°39.85	3-4	Oligohaline
	St. Leonard Creek	St. Leo (XDE 2792)	7.5 naut. mi of upstream of Patuxent River mouth	38°22.74 76°30.08	6-7	Mesohaline
Choptank River	Windy Hill	Wind. HL (NONE <u>)</u>	10.0 naut, mi upstream of Rt. 50 bridge at Cambridge, MD	38°41.43 75°58,42	3-4	Oligohaline
	Horn Point	Horn. Pt. (MET5.2)	4.0 naut. mi downstream Rt. 50 bridge at Cambridge, MD	38°37.07 76°07,80	7-8	Mesohaline
Potomac River	Maryland Point	Md. Pt. (XDA 1177)	1250 yds. SE of buoy R-18	38°21.36 77°11.52	9-10	Oligohaline
	Ragged Point	Rag. Pt. (XBE 9541)	l.5 naut. mi WNW of BW "51B"	38°09.77 76°35.58 7	13-14	Mesohaline
Chesapeake Mainstem	Still Pond	Stil. Pd. (MCB2.2)	700 yds. W of channel 34 marker "41"	, 37°20.91 ^L 76°10.87	9-10	Oligohaline
	Buoy R-78	R-78 (MCB3.3C)	200 yds. NNW of channel buoy "78"	38°57,28 76°23,58	15-16	01igo-Meso haline
	Buoy ² R-64	R-64 (MCB4.3C <u>)</u>	300 yds, NE of channel buoy R-64	38°33,60 76°25.64	15-16	Mesohaline
	Point No Point	Pt. No. Pt. (MCB5.2)	3.2 naut, mi E of Pt. No Pt.	38°07,98 76°15,10	13-14	Mesohaline

¹Seconds of latitude and longitude are expressed as hundreths of a minute.

²Also serves as the VFX Station,

,

tributaries (Potomac, Patuxent, and Choptank), one being in the transition zone and one in the lower estuary. In all cases station locations were selected having depths and sediment characteristics representative of the estuarine zone being monitored.

In a few instances (Patuxent stations and Choptank station at Horn Point) SONE stations are not located exactly at the same site as other Maryland Chesapeake Bay Water Quality Monitoring Program stations, although they are close (≤ 10 km). The prime reason for this is that there is a considerable amount of benthic flux data already available from the SONE sites selected in the Patuxent and Choptank and these data can be used by the monitoring program. In all cases our stations and the OEP stations are in the same estuarine zone. Benthic fluxes have been found to be quite constant over small spatial scales (~10-20 km) given that measurements were taken in the same estuarine zone (similar salinity, sediments and depths) and hence this program retains a high degree of comparability with other program components (Boynton et al. 1982b).

The use of sediment trap methodology to determine the net vertical flux of particulate material is restricted to the deeper portions of the Bay. In shallower areas local resuspension of bottom sediments is sufficiently large to mask the downward flux of "new" material. Hence, sediment traps are not a useful tool in the upper reaches of the mainstem and in many tributary areas. The array (R 64; Fig. 3-1) is positioned near the center of the region experiencing seasonal anoxia to monitor the vertical flux of particulate organics reaching deeper waters. This location is close to, but does not exactly coincide with, OEP stations in this area. Since sediment traps are fixed pieces of gear exposed to damage and/or loss by commercial boat traffic, a location was selected not regularly used by such vessels, but still close to the OEP station.

3.2 <u>Sampling Frequency</u>

The sampling frequency for the SONE portion of this program is based on the seasonal patterns of sediment water exchanges observed in previous studies conducted in the Chesapeake Bay region (Kemp and Boynton 1980; Kemp and Boynton 1981; Boynton et al. 1982b; Boynton and Kemp 1985). These studies indicated that there are several distinct periods over an annual cycle including: 1) a period influenced by the presence of a large macrofaunal community (spring-early summer), 2) a period during which macrofaunal biomass is low but water temperature and water column metabolic activity high and anoxia prevalent in deeper waters (August), 3) a period in the fall when anoxia was not present and macrofaunal community abundance low but re-establishing and 4) an early spring period (April-May) when the spring phytoplankton bloom occurs, and water column nutrient concentrations are high (particularly nitrate). Previous studies also indicate that short-term temporal (day-month) variation in these exchanges is small but that there are considerable differences in the magnitude and characteristics of fluxes among distinctively different estuarine zones (i.e. tidal fresh vs. mesohaline regions). In light of these results, the monitoring design adopted for the SONE study involves quarterly measurements, as described above, distributed in zones characteristic of mainstem Chesapeake Bay and tributary rivers.

The selection of sampling frequency for the VFX (organic deposition) monitoring program is governed by different constraints, although compatible with SONE sampling frequencies. It appears that net depositional rates are largest during the warm seasons of the year (April-October) and considerably lower during winter periods (November-March). Resuspension of near-bottom sediments and organics in one tributary of the Bay (Patuxent) followed a similar pattern (Boynton et al. 1982b; Kemp and

Boynton 1984). However, there is some variability in warm season depositional rates, due probably to algal blooms (of short duration; daysweek), variation in zooplankton grazing rates (week-month) and other, less well described, features of the Bay. Given the importance of obtaining inter-annual estimates of organic matter deposition rates to deep waters of the Bay, sampling is designed to be almost continuous during the summer period (July-August), of shorter duration during the generally smaller bloom periods of the spring and fall and only occasional during the low productivity, low depositional period of the winter (December-March). Direct measurements of organic deposition to Bay sediments is monitored 19 or more times per year. Vertical deposition rate measurements are coordinated with SONE measurements in that sediment-water exchanges are monitored at the end of each intensive VFX deployment period and also coincide with other Monitoring Program sampling activities. The sampling schedule for the period July 1985 - June 1986 is shown in Table 3-2 for this component of the Monitoring Program.

3.3 Field Methods

Details concerning methodologies have been described in the Ecosystem Processes Component Study Plan (Boynton et al. 1984). The following section provides an overview of field activities.

3.3.1 SONE Study

3.3.1.1 <u>Water Column Profiles</u>: At each of the 10 SONE stations, vertical water column profiles of temperature, salinity and oxygen are obtained at 2 m intervals from the surface to the bottom immediately prior to obtaining intact sediment cores for incubation. Near-surface (± 1m) and near-bottom (± 1m) water samples were also collected using a high volume submersible pump system. Samples are filtered, where appropriate, using

Sediment trap deployment

🖲 sediment trap retrieval and deployment of new traps

sediment trap retrieval

duration of sedime.it-water flux monitoring

Fig. 3-2. Sampling schedule for VFX and SONE programs from July 1985 - June 1986.

0.7 um GF/F filter pads and immediately frozen. Samples are analyzed for the following dissolved nutrients and particulate materials: ammonium (NH_4^+) , nitrate (NO_3^-) , nitrite (NO_2^-) , total dissolved nitrogen (DON), dissolved inorganic phosphorous (PO_4^{-3}) , dissolved organic phosphorus (DOP), silicious acid $(Si(OH)_4)$, particulate carbon (PC), particulate nitrogen (PN), particulate phosphorous (PP), chlorophyll-<u>a</u> and seston.

3.3.1.2 <u>Sediment Cores</u>: Intact sediment cores are obtained at each SONE station using a modified Bouma box corer. After deployment and retrieval of the box corer, the plexiglass liner containing the sediment sample is removed and visually inspected for disturbance. If the core appears satisfactory it is placed in a holding stand prior to further processing.

Three intact cores are used to estimate net exchanges of oxygen and dissolved nutrients between sediments and overlying waters (Fig. 3-3). Prior to beginning incubation, the overlying water in a core is replaced by bottom water to insure that water quality conditions in the core closely approximates in-situ conditions. Gentle circulation of water is maintained in the cores during the measurement period via the stirring devices attached to the O_2 probes. The rate of circulation does not induce sediment resuspension. The cores are placed in a darkened water bath to maintain ambient temperature. Oxygen concentrations are recorded every 15 minutes and water samples (30 ml) are extracted from each core every 30 minutes over the 2-5 hour incubation period. As a nutrient sample is extracted from a core, an equal amount of ambient bottom water is added. One additional sample of bottom water is incubated and sampled as described above and serves as a water blank. Water samples are filtered, immediately frozen and later analyzed for NH₄⁺, NO₃⁻, NO₂⁻, FO₄⁻³ and Si(OH)₄ concentrations.

Nutrient and oxygen fluxes are estimated by calculating the mean rate of change in concentration over the incubation period and then converting the volumetric rate to a flux using the volume: area ratio of each core.

3.3.1.3 <u>Sediment Profiles</u>: At each SONE station an intact sediment core is obtained and Eh measurements immediately made at 1 cm intervals to a depth of about 10cm. Once a year sediments are sampled for vertical distribution of both dissolved and particulate nutrient concentrations and water content. For these measurements several intact sediment cores are obtained at each station using the Bouma box corer. Sub-cores are taken and sliced at 1cm intervals to a depth of 5cm and a slice at 10 cm is also taken. Samples are analyzed for water content, particulate carbon (PC), nitrogen (PN), phosphorus (PP), NO₄⁺, NO₃⁻, NO₂⁻, PO₄⁻³ and Si(OH)₄ concentrations.

3.3.2 SONE Methods Evaluation: In-situ Chambers vs. Shipboard Cores

Many of the previous investigations of oxygen and nutrient fluxes across the sediment-water interface in Chesapeake Bay and other coastal waters were conducted using enclosure chambers deployed in situ (e.g., Boynton et al. 1980; Kemp and Boynton 1984; Boynton and Kemp 1985). While these in situ chambers have the advantage of causing minimal disturbances of sediments, they require the deployment ship to remain on station during the entire incubation (usually 3-6 hours). Such experimental systems would be impractical for use in monitoring program (such as this OEP study) which includes ten stations, the extreme locations which are separated by more than 200 km ship "steaming" distance. Hence, the present program has developed an alternative method which involves shipboard incubation of intact sediment cores, allowing ship transit between stations while flux measurements are being made on previously collected cores.

Figure 3-3. Schematic diagram of the incubation chamber used in SONE Program.

Questions have been raised concerning the relative abilities of the two methods (in situ chambers vs intact cores) to obtain ralistic measures of sediment interface fluxes. In addition, it was anticipated that measurements made in the current OEP program with intact cores could be compared with those made previously at the same stations using in situ chambers. Thus, it was decided that (in conjunction with a Maryland Sea Grant Project) simulataneous measurements by the two methods would be made at selected stations and dates. Triplicate measurements were made by each method; SCUBA divers assisted in deployment of chambers. Comparison studies were conducted in May at Dares Beach (CP2) and in August at R64 (CP3) and Dares Beach, and both oxygen and ammonium fluxes were monitored.

No significant differences in measurements with the two methods were detected (p < 0.05) for sediment oxygen demand (SOD) in spring and summer at CP2, although mean rates were 5-10% lower with cores (Table 3-2). No SOD was measured at CP3 where bottom waters were anoxic or hypoxic. Rates of ammonium regeneration in spring at CP2 were about 30% lower (significant at p < 0.05) with cores compared to chambers. Ammonium fluxes measured in August by the two methods were nearly identical both at CP2 and CP3. From these data we would conclude that there is no consistant pattern of difference between oxygen and ammonium fluxes measured by cores versus chambers. Variances associated with these measurements (10-20% of mean) make it impossible to detect small differences (< 20%) without further studies. Previous reports of similar comparisons between cores and chambers for SOD are somewhat inconsistent, and Pamatmat (1977) concludes that there is no inherent difference in the measurements. Similar method comparisons for ammonium fluxes are not available in the literature.

		Oxyge	n Flux #	Annonium Flux		
Date (1986)	Station	(IngO ₂ Cores	m ⁻² d ⁻¹) <u>Chambers</u>	(umol N m Cores	⁻² h ⁻¹) Chambers	
22 May	CP2	1.18 ± 0.34	1.32 ± 0.06	163 <u>+</u> 29	238 <u>+</u> 34	
14 Aug	CP3		0	641 <u>+</u> 57	585~	
15 Aug	CP2	1.52 ± 0.25	1.64 ± 0.27	331 <u>+</u> 56	340 <u>+</u> 35	
25 פניא	CP3	D	0	721~	734 <u>+</u> 68	

Table 3-2. Comparison of sediment-water flux measurements of oxygen and ammonium using shipboard incubated cores versus in situ incubated chambers. *

* Given are means of three replicates ± one standard deviation.

+ Oxygen was not present it bottom waters at Station CP3 on August dates.

Only one replicate available.

3.3.3 VFX Study

At the VFX station, a water column profile of temperature, salinity and oxygen is obtained at 2 m intervals from the surface to the bottom to characterize general features of the water column. Water samples are also collected at 5 discrete depths using a submersible pump system. Routinely, a sample is taken from near-bottom and near-surface waters, and the remaining three distributed such that one is just above, one just below and one at the pycnocline. Samples are analyzed for particulate materials including PC, PN, PP, chlorophyll-a and seston. These data provide descriptions of the particulate matter field at that moment and are useful in evaluating results developed from sediment trap collections.

3.3.3.1 <u>Sediment Sampling</u>. During each VFX monitoring cruise a surficial sediment sample (surface lcm) is obtained using either a Van Veen grab or the Bouma box corer. Sediment samples are later analyzed to determine PC, PN and PP concentrations and chlorophyll-<u>a</u> content. Subsamples are also examined to determine the composition of surficial sediment particulates (e.g. algal species, zooplankton fecal pellets, etc.)

3.3.3.2 <u>VFX Sampling</u>. The sampling device used to develop estimates of the vertical flux of particulate materials is comprised of a lead or concrete anchor-weight (200 kg) connected to a stainless steel wire (0.8 cm diameter) which is maintained in a vertical position through the water column by a sub-surface buoy (45 cm diameter; 40 kg positive buoyancy). The sub-surface buoy is tethered to a surface marker buoy by wire cable (Fig. 3-4). Collecting arrays are attached at about 5, 9 and 14 m beneath the water surface to obtain estimates of vertical flux of particulates from the surface euphotic zone to the pycnocline, flux across the pycnocline to deep waters and flux of materials associated with the near-bottom which includes local resuspension of sediments as well as net deposition.

The sediment trap string is routinely deployed and retrieved using CEES research vessels. Normal sampling periods last 1-2 weeks. At the end of a sampling period, collecting cups are retrieved either by SCUBA equipped divers or by hoisting the entire array to shipboard. In either case, cups are not capped prior to retrieval. New cups are then attached, fouling organisms removed from the frames and the array lowered back into the water.

The contents of a collecting cup are removed and aliquots taken for determination of PC, PN, PP, chlorophyll-<u>a</u> and seston concentrations. Additionally, a 10 ml sample is preserved using a modified Lugol's solution, and later examined to determine characteristics of collected particulate material (e.g. algal speciation, zooplankton fecal pellets, etc.).

Particulate material concentrations in sampling cups are converted to vertical flux to the depth at which the collecting cup was suspended by consideration of the cross-sectional area of the collecting cup, deployment time and sample and subsample volumes. Further details concerning this monitoring program are provided in Boynton et al. (1985).

In brief, methods are as follows: NO_3^- , NO_2^- , NH_4^+ and PO_4^{-3} are measured using the automated method of EPA (1979); dissolved organic phosphorus (DOP) analysis uses the digestion and neutralization procedure of D'Elia et al. (1977) followed by DIP analysis (EPA 1979); silicious acid is determined using the Technicon Industrial System (1977) method; dissolved organic nitrogen (DON) analysis follows the method of D'Elia et al. (1977); PP concentrations are obtained by acid digestion of muffled-dry samples (Aspila et al. 1976) while PC and PN samples are analyzed using a model 240B Perkin-Elmer Elemental Analyzer; biogenic silica is measured using the method of Paasche (1973); methods of Strickland and Parsons (1972) and

ethods of Strickla 15

3.3.4 <u>Chemical Analyses</u>

Vertical Flux Array

Shoaf and Lium (1976) are followed for chlorophyll <u>a</u> analysis; total suspended solids determination uses the gravimetric technique of EPA (1979).

3.3.5 Algal Identification

Identification of particulates is accomplished by microscopic examination. Phytoplankton samples are allowed to settle for 3 or more days prior to concentration and subsequent analysis. Net plankton (<40 u on longest axis) and nannoplankton are counted using the random field technique (Lund et al. 1958; Venrick 1978), which requires a minimum of 10 fields to be enumerated with 200 cells or more present. This random field technique is done at 200x magnification, with species identification confirmation at 400x as required. Following the identification of more than 200 cells via random field analysis, a 100X scan is made of the entire settling chamber to identify the large net forms and rare species present. Algae are identified to species where possible. Additionally, non-algal particles are also examined and identified (i.e. zooplankton fecal pellets, cysts, skeletal fragments) to further characterize the composition of depositing materials.

3.4 Level I Analysis:

3.4.1 SONE Study

Level I interim reports include tabular listings of all variables measured. At each SONE station, sediment Eh, net sediment-water nutrient and oxygen flux, surface and bottom water dissolved nutrient concentrations and vertical profiles (2m intervals) of dissolved oxygen, temperature and salinity are reported. Summarly statistics (means, standard deviations) are provided for nutrient and oxygen flux data.

3.4.2 <u>VFX</u> <u>Study</u>

Each Level I report includes tabular listing of all variables measured. Specifically, at each VFX station deposition of particulate materials to collection cup depth, characterization of surficial sediments, particulate material concentration in the water column and vertical profiles (2m intervals) of dissolved oxygen, temperature and salinity are reported.

4. HISTORICAL PATTERNS of SOD and NH_{Δ} FLUX

4.1 Data Availability

Measurement of oxygen and ammonium fluxes across the sediment-water interface were initiated in 1978 at stations in the Patuxent River estuary. This research which was supported by Maryland DNR/PPSP, continued through 1980. Two cruises supported by Sea Grant in 1983 and 1984 puctuated the period between early DNR studies and the current OEP monitoring program which has continued since 1984. Two Patuxent River stations have been sampled during this period: Buena Vista is located in the upper estuary near Chalk Point; St. Leonards Creek is lucated closer to the estuary's mouth. Measurements at sites in the open Bay and selected tributaries in 1980 and 1981 (supported by US EPA) can also be compared to recent OEP data. In this section, we examine these data for historical trends which may be relevant to the monitoring effort. Although the earlier measurements were made using in situ chambers as opposed to the intact cores used in the OEP monitoring program, direct comparisions of these two methods in 1986 revealed no consistent differences (see Section 3.3.2). Thus, for the present analysis, it is assumed that the two methods are comparable.

Fig. 4-1. Annual patterns of water temperature, sediment oxygen demand (SOD) and ammonium regeneration from sediments for Buena Vista station in the Patuxent River estuary between 1978 and 1986. Given are mean standard deviations for three replicate rate measurements (only one replicate ammonium flux in 1978).

4.2 Patuxent River Patterns

At the Buena Vista station, patterns of SOD and ammonium regeneration were relatively distinct in the earlier period (1978-1980) with annual maxima occuring in mid July and late August, respectively (Fig. 4.1). In the more recent period (1983-1986), rates appear to be lower with seasonal peaks occuring about two months earlier in late April and mid June, respectively. In addition, the range of rates observed in a given month is much greater for the recent period. It is difficult to statistically compare these data sets because measurements were made on different dates. However, if data are arbitrarily grouped into four periods (Apr.- May; June - July; Aug. - Sept.; Oct. - Nov.), general comparison can be made. In this way, we find that SOD value in the OEP data were significantly lower from June through November, while ammonium fluxes were lower in the Aug. - Sept. period. The overall trend is highlighted in Fig. 4-2 where the ranges of rates in the two time periods are outlined.

There are no striking differences in SOD and ammonium fluxes between the two time periods at the St. Leonards Creek station (Fig. 4-3); however, substantially fewer data are available for comparisons at this station. There is a suggestion of the same trend as noted for Buena Vista here, but it is less pronounced, perhaps, in part, because of insufficient measurements and the absence of data before 1980.

4.3 Potential Factors Regulating Flux Patterns

These changes in magnitudes and seasonalities of sediment-water fluxes in the Patuxent estuary over the decade 1978-1986 may be responses to alternations of both temperature and river flow patterns between the beginning and end of this period. Seasonal temperature differences

Fig. 4-2. Annual patterns of mean water temperature and ranges in SOD and ammonium regeneration at Buena Vista for the two periods: 1978-1980; and 1983-1986 (see Fig. 4-1).

Fig. 4-3.

-3. Annual patterns of water temperature, sediment oxygen demand (SOD) and ammonium regeneration from sediments for St. Leonards Creek station in the Patuxent river estuary between 1980 and 1986. Given are mean standard deviations for three replicate rate measurements. between two periods are consistent with seasonal differences in sedimentwater fluxes, where spring temperatures and rates were both higher in more recent periods while summer values were higher in the earlier years (Fig. 4-2). However, these temperature differences (ca. 2°C) are not sufficient, per se, to explain the changes in fluxes at Buena Vista. For instance, assuming a Q10 of 2.0 (Nixon 1981), we would expect a decrease in summer ammonium fluxes of about 20% rather than 60% as observed (Fig. 4-2).

Annual mean flow of the Patuxent was substantially higher from 1978-1980 (ca. 520 cfs) compared to the 1983-1985 period (ca. 380 cfs). This is consistent with the fact that annual mean values of SOD and ammonium regeneration at Buena Vista were also greater in the earlier period (Fig. 4-4). This correlation is consistent with with a simple conceptual model which postulates a direct chain influence, where river flow delivers nutrient inputs which support plankton production, some of which is deposited to the sediment surface, thereby fueling SOD and NH+4 regeneration (e.g. Boynton et al. 1982b). The observed seasonal shifts, however, would not necessarily be predicted from this model. In fact, data presented by Cory (1974) for primary production in the Patuxent near Buena Vista indicate the opposite response to increased nutrient loading (from sewage effluents), where the time of maximal rates shifted from spring to summer. River flow, however, also peaked 3 months earlier in the 1978-1980 period compared to 1983-1985 (Fig. 4-4), and in combination with the temperature differences, might account for the seasonal shift in fluxes. This explanation would require a 3-4 month lag between time of peak river flow and peak sediment-water fluxes, which is consistent with the previously described scheme relating nutrient inputs, productivity and sediment-water fluxes (Kemp and Boynton 1984).

Fig. 4-4. Patuxent River flow (near Bowie, Md.): a) annual means for 1978-1985; b) monthly means and ranges for two periods, 1978-1980 and 1983-1985 (USGS Water Resources Reports 1978-1985).

4.4 <u>Sediment Flux Patterns in the Bay and Lower Tributaries</u>

Comparing summer (Aug) and spring (May) rates of SOD and ammonium regeneration for stations in the open Bay and tributary months between 1980-1981 and 1985-1986, we find differences parallel to those discussed above for the Patuxent (Fig. 4-5). As in the Patuxent, summer ammonium fluxes in 1985 were higher (significantly at 3 of 4 stations) than in 1980, while spring fluxes at the later date (1986) were similar or lower than those in 1981. SOD fluxes were significantly higher in both summer and spring of the earlier period, although the differences were less pronounced in May (Fig. 4-5). Annual peak flows of the Susquehanna River (Fig. 4-6) were almost twice as high in 1980 and 1981 than in 1985 (1986 data not yet available). Once again, this suggests a direct relation between river flow and sediment-water fluxes, as mediated by nutrient inputs and plankton production (Boynton et al. 1982). Effects of river flow other than nutrient delivery may also be operational here. For example, increase stratification assoicated with high river flows may also enhance cross-bay circulation and benthic-pelagic coupling (Malone et al. 1986).

STATION DESIGNATIONS

Fig. 4-5. Sediment oxygen demand and ammonium regeneration from sediments at two open Bay stations (R64; Still Pond, SP) and two stations near the mouths of tributaries (St. Leonards Creek, SLC; Horn Point, HP) for the two periods: Aug 1980, May 1981; Aug 1985, May 1986. Given are mean standard deviations for three replicates.

Fig. 4-6. Monthly mean values for Susquehana River flow in 1980, 1981, and 1985 (USGS Water Resources Reports 1978-1985).

5. CHARACTERISTICS OF SEDIMENTS, SESTON AND PARTICLE FLUX AT STATION R-64 (VFX MONITORING)

5.1 <u>Seasonal Patterns of Deposition</u>

Fluxes of particulate organic and inorganic materials to the depth of collecting cups at a mid-Bay station (R-64) are shown in Figure 5-1. In this figure portions of three years of monitoring data are shown and coded as follows: 1 = July-December, 1984; 2 = February-October, 1985; 3 = January - June, 1986. The measured flux (y - axis) is plotted against Julian day (x - axis) for all three years. As a point of reference, Julian days 90, 180 and 270 correspond approximately to 1 April, 1 July and 1 October, respectively. Note also that the y-axis scales differ among panels in some cases.

There were several strong seasonal patterns evident in the depositional data. During 1985 and 1986 there appeared to be a major depositional event over prolonged periods during the spring of both years. For example, in 1985 deposition rates began to increase in early March, reached a peak of about $1.2 \text{ gCm}^{-2}\text{d}^{-1}$ in early May and then declined rapidly in June. A very similar pattern was evident in 1986, with some shifts in magnitude and timing of the spring event. We suspect that high and sustained spring deposition rates are due to the sinking of the spring phytoplankton bloom, much of which appears to be ungrazed by the zooplankton. This pattern has been repeatedly observed in other coastal and estuarine systems (Smetacek, et al. 1978; Skjoldal and Lannergren, 1978; Peinert et al. 1982; Davies and Payne, 1984).

In contrast, summer deposition rates were erratic. For example, in midsummer (1985) deposition rates to the middle cups ranged from about $0.45 - 1.2 \text{ gCm}^{-2}\text{d}^{-1}$ within a 25 day period. Similarly variable patterns were observed in the summer of 1984 as well. It appears that this pattern is the result of sinking of phytoplankton blooms, the nutrient requirements of which were probably supported by aperiodic upwelling of nutrient-rich deep waters

Figure 5-1.

Summary of estimates of vertical deposition of particulate materials (Seston, PC, PN and PP) to surface, middle and bottom water collecting cups at Station R-64 (see Fig. 1-1 for station location). Data on the panels are coded by year as follows: 1=1984; 2=1985; 3=1986. Deposition rate data for 1985 are connected by solid lines. Note that y-axis scales differ between depths for some variables. As a point of reference, Julian days 90, 180, and 270 are roughly equivalent to April 1, July 1 and October 1, respectively.

during the summer (Malone, et al. 1986; Tuttle, et al., 1986). Thus, a part of the picture which emerges relative to deposition is one wherein there is a substantial and sustained spring event, largely supported by phytoplankton production based on "new nutrients" (Dugdale and Goering 1967; Kemp and Boynton 1985). The erratic summer deposition pattern reflects aperiodic boom and bust cycles of phytoplankton communities. In summer, nutrient requirements of the phytoplankton are largely supplied by recycled nutrients, a portion of which comes from sediments and a portion from water column recycling. We suggest that blooms occur whenever meteorological events (especially strong winds) cause nutrient enriched deep water to mix upward into the euphotic zone. These blooms then last until nutrient stocks are exhausted. Until the next upwelling event, lower levels of primary production prevail in the upper mixed layer. This production is supported by rapid in-situ nutrient recycling. The rapid bloom-and-crash nature of summer phytoplankton production is therefore responsible for random-looking peaks and dips in the summer record of organic matter deposition.

5.2 <u>Seasonal Patterns In Sediment Characteristics</u>

We have summarized in Fig. 5-2 the 3-year seasonal patterns of particulate carbon (PC), particulate nitrogen (PN), and particulate phosphorus (PP) in the surficial sediments (top lcm at Station R-64 (Fig. 5-2 a,b,c). While there is a good deal of scatter in these data, several patterns appear to be fairly clear. First, an obvious and strong increase in the percentage of PC and PN at the sediment surface occurred briefly during the summer period of 1984. PC concentrations increased from about 2.9 to almost 3.8 percent of dry weight from July to August and then declined to about 2.5 percent by the beginning of October. A similar pattern was

Figure 5-2. Summary of particulate carbon, nitrogen, and phosphorus content, and element ratios of surficial sediments at station R-64 for the period July, 1984 - June, 1986. In the upper three panels data points for 1985 are connected by solid lines. Data coding is as in Fig. 5-1. The diagonal lines in the lower three panels represent Redfield Ratios for PN:PC, PP:PC, and PP:PN respectively. Note these ratios are the inverse of the usual presentation of these ratios.

evident for PN. Peaks in PN and PC content of surficial sediments parallel reasonably well periods of heavy deposition during the summer of 1984. In 1985 and 1986 the signal in PC and PN content in surficial sediments was somewhat different: concentrations were generally fairly low during the early spring, increased dramatically during the late spring and early summer and then declined substantially during the late summer and early fall. These patterns are reasonably similar to the patterns observed in deposition (Fig. 5-1) with some time lag involved. There seems to be little seasonal pattern in the PP content of surficial sediments at station R-64 in contrast to the patterns seen for PC and PN. For example, the lowest value in two and onehalf years of monitoring was about 0.047% and the highest was about 0.070%.

Additional insights can be gained with regard to the fate of deposited organic material by examining the composition ratio of organic material in surficial sediments. Ratios of PN:PC, PP:PC and PP:PN for the entire monitoring period are shown in Fig. 5-2 d,e,f. The diagonal solid line in each diagram represents the expected composition ratio for healthy phytoplankton (Redfield Ratio, PC:PN:PP = 106:16:1, atomic). The PN vs. PC plot (Fig. 5-2d) indicates a substantial and consistent loss of PN relative to PC in the sediments at all seasons during all three years examined. A similar, although not as strong, pattern is evident in the PP:PC ratios (Fig. 5-2e). These data suggest that there is preferential loss of both nitrogen and phosphorus relative to carbon in the sediment. Finally, the ratio of PP:PN (Fig. 5-2f) suggests a relative enrichment in PP relative to PN in these surficial sediments, although this relationship over the monitoring period has considerable scatter associated with it. Overall, examination of these data suggest that nitrogen is preferentially lost from these sediments relative to both carbon and phosphorus. These findings are consistent with

earlier work by Kemp and Boynton (1985) in this area of the bay. They found good correspondence between the composition ratios of surficial sediments and the magnitude of sediment water exchanges of nitrogen and phosphorus compounds.

5.3 Relations Between Water Column Particulates and Depositing Materials

In examining the characteristics and magnitude of depositing particulates it is of interest to examine and relate the characteristics of deposited material to the characteristics of particulates in the water column. We have summarized composition ratios for water column particulates in the vicinity of the surface, mid and bottom collecting cups for the entire monitoring period in Figure 5-3. In this diagram solid diagonal lines again represent the Redfield Ratio indicating expected composition ratios of phytoplankton communities. In some of the panels there are groupings of data surrounded by dashed lines, these lines serving to indicate data clusters and have no statistical basis. A number of interesting patterns emerged. In brief, PN:PC ratios of particulate material throughout the water column rather closely approximated the Redfield Ratio in all seasons examined and in surface mid and bottom waters. We infer from this that the water column particulate field comprises considerable organic material (either phytodetritus or living phytoplankton) which on an average appears derived from a nitrogen-replete phytoplankton community.

In sharp contrast to these results, composition ratios of PP:PC and PP:PN show rather distinct seasonal or annual departures from the Redfield Ratio. For example, in the surface and middle regions of the water column (and to a lesser extent in deep waters) there are indications that particulate material during the summer of 1984 was either sufficient or rich in PP relative to PC. However, during the spring of 1986 there were indications that particulate materials in mid- waters were deficient in PP

Figure 5-3.

Scatter plots showing the ratios of nutrient elements of seston suspended in the water column at surface, mid and bottom depths at station R-64 from July, 1984 - June, 1986. Water column sample depths correspond to the depths of sediment trap collecting cups. Solid diagonal lines and dashed lines represent Redfield Ratios and data clusters, respectively, as in Fig. 5-2. relative to PC. At times this deficiency was very pronounced. This pattern also occurred in bottom waters but large deviations were damped out.

The pattern for PP:PN ratios is consistent with the PP:PC ratios in that during the summer of 1984 there was an indication of sufficiency or enrichment in PP relative to PN while in the spring of 1986 there were indications (and at times strong indications) of P deficiency in particulates relative to nitrogen. This pattern was observed in surface, mid-depth and bottom waters.

In summary, it appears that changes in the nutrient characteristics of the particulate field were dominated by strong annual or seasonal variability in phosphorus abundance or availability. When the remainder of the 1986 data is analyzed, we may be better able to resolve what appear to be strong departures from the expected Redfield Ratio. Finally, the particulate data reported here should be compared with the dissolved inorganic nitrogen and phosphorus data being collected by the Office of Environmental Programs Water Quality Monitoring Study. When this is done we will be better able to trace changes in nutrient abundance as dissolved compounds are taken up by phytoplankton and transformed into depositing material.

We have further examined the qualitative nature of sinking particles by examining the composition ratios of particulates collected in sediment trap cups (Fig.5-4). Regardless of the year or season, the PC:PN ratio of material collected in surface, mid-water, and bottom sediment trap always closely approximated the Redfield Ratio. In this regard the sinking material appeared similiar to the composition of particulates suspended in the water column. The PC:PP ratio for collected particulates, particularly those collected in bottom cups, consistently resembled the Redfield Ratio in sharp contrast to the considerable scatter observed in the PC:PP

Figure 5-4.

Scatter plots showing the ratios of nutrient elements in particulate material collected in sediment traps (surface, mid and bottom) at station R-64 from July, 1984 - June, 1986. Diagonal lines represent Redfield Ratios as in Fig. 5-2.

ratio of particulates in the water column. PP:PN ratios revealed a similar pattern. There was some scatter associated with mid cup collections and some indication of lower concentrations of PP relative to PC.

Thus, the picture that emerges here is that in spite of considerable variability in the concentrations and elemental composition of suspended particulate matter, the material collected in the sediment traps appears to be living phytoplankton or phytoplanktonic debris. The elemental ratios of sedimenting material closely approximates that expected of healthy phytoplankton communities. Similar patterns have been reported for other estuarine systems (e.g. Hargrave and Taguchi 1978), and several explanations for the observed element ratios appear possible. The first involves the sampling schemes used to collect these data. Suspended seston was filtered from discrete water samples while the sediment traps integrate the downward flux of particulates over time (4-14 days) and space. It is known that water column characteristics can change on time scales of hours to days (Malone et al., 1986) and hence considerable variability in particulate material composition ratios might be expected. However, the compositional differences between suspended seston and sedimented materials were rather consistent. Simple variability in the composition of water column particulate material does not provide a very satisfactory explanation. A more satisfactory explanation for the observed differences between the elemental composition of seston and sinking material is that most of the deposited material is not a simple or constant fraction of particulate material in the water column. Rather, it appears that most sedimentating particulates appear to be derived from healthy phytoplankton.

In the middle sections of Chesapeake Bay it appears that phytoplankton production is the prime source of organic materials for heterotrophs in the water column and sediments (Flemer 1970). Given this we would expect that

the majority of organic particles collected in the sediment would be composed of phytoplankton. During some periods of the year it seems likely that depositing material is largely composed of living phytoplankton while at other times phytodetritus comprises the bulk of sedimenting material. One approach to this question is to compare PC:Chl ratios of particulate matter in the water column and in sediment trap cups (Figure 5-5). Several reasonably clear patterns are evident in these data. First, in surface waters there were several periods when the PC:Chl ratio was particularly low indicating predominence of living phytoplankton over phytodetritus. For example, in surface waters at R-64 during the spring bloom in 1985 and 1986, PC:Chl ratios were generally less than 100. During the summer of 1984 and the late spring-early summer of 1985, PC:Chl ratios were considerably higher, indicative of algal detritus (e.g., Chervin et al. 1981). The PC:Chl ratios in sediment trap collections followed a similar pattern: early spring deposition seemed to be composed of largely intact phytoplankton cells while at other times of the year, particularly during the summer of 1984, it appears that material sinking from the euphotic zone was largely composed of phytodetritus and zooplankton fecal pellets. Qualitatively similiar patterns of deposition have been reported for other coastal areas (Hargrave and Taguchi, 1978; Smetacek, et al., 1978; Smetacek and Hendrikson, 1979; Smetacek, 1980; Hargrave and Taguchi, 1978).

There were additional spatial and depth-related patterns evident in PC:Chl ratios of suspended seston and sinking particulate matter. For example, in surface waters there were several periods when PC:Chl ratios were a good deal less than 100, indicative of healthy phytoplankton communities. The PC:Chl ratio in mid-waters were never below 60 and frequently in excess of 150. In bottom waters ratios less than 100 were rare and frequently the

Figure 5-5. Summary of particulate carbon:chlorophyll-a ratios from surface, middle and bottom waters and sediment trap collecting cups at Station R-64 from July, 1984 - June, 1986. Solid horizontal lines represent a C:Chl-a ratio of 100.

ratios were in excess of 200. An even stronger vertical pattern in PC:Chl ratios is evident in collecting cups. These observations indicate considerable processing of algal material as it sinks through the water column towards deeper waters and the sediment surface.

6. SEDIMENT OXYGEN DEMAND AND NUTRIENT FLUXES

Sediment-water exchanges of dissolved oxygen and inorganic nutrients (SONE Monitoring) were determined four times per year (spring- fall) at each of ten stations in the Maryland portion of Chesapeake Bay. Station locations and flux measurement procedures were described earlier (Section 3). As presented here, each flux measurement represents the mean of three replicate determinations. On occasion the results from a sediment core did not meet our quality-control criteria, and these data were excluded from the means. The data collected for all individual benthic fluxes are given in Appendix Table 4 and 5.

The data presented here were collected during the first two years of OEP Monitoring, from August 1984 to June 1986 (SONE Cruises 1-8). We therefore have eight sets of mean flux data for each SONE station. While it is too early in the monitoring effort to discern long-term trends in these data, fairly strong patterns have emerged in: (1) the magnitude of spatial and temporal variability of SOD and nutrient fluxes; (2) environmental factors regulating sediment-water exchange dynamics; (3) stoichiometric relationships (element ratios) in the net fluxes of oxygen and inorganic nutrients. The most significant finding to date, however, is strong evidence supporting our hypothesis concerning the coupling between benthic fluxes and the rate of deposition of organic matter in the mainstem bay.

6.1 Temporal and Spatial Patterns in Benthic Fluxes of Oxygen and Nutrients

Benthic fluxes of oxygen and dissolved inorganic nutrients at SONE stations exhibited considerable within-station and between-station variability (Fig. 6-1, a-f). Variability in fluxes from replicate sediment cores at individual stations was generally small (Table 6-1 and Section 3 on Core vs. Dome Comparisons), and the within-station variability, averaged over

Spatial variability in benthic fluxes shown as the two-year mean spring-throughfall sediment-water exchanges of oxygen (as SOD) and nutrients at SONE monitoring stations. Vertical lines give the mean + 95% confidence intervals for flux determinations made at each of the ten SONE monitoring stations between August 1984 and June 1986. Stations are coded along the y-axis as follows: 1. St. Leonard: 2, Buena Vista; 3, Horn Point; 4, Windy Hill; 5, Ragged Point; 6, Maryland Point; 7, Point No Point; 8, R-64; 9, R-78; 10, Still Pond. See Fig. 3-1 for station locations.

Figure 6-1.

<u></u>										
$(g \ 0_2 m^{-2} d^{-1}) \qquad (umol \ m^{-2} h^{-1})$										
STATIONS	500	cy%	NH4	C ⁴ N+N	CN PO4	si کا	د٧			
St. Leonard	-2,95 <u>+</u>	0.19 6	125.5 <u>+</u>	38.56 ³ 21.59 <u>+</u>	2.22 10 1.15	<u>+</u> 1.62 382.5	<u>+ 122.59</u>			
Buena Vista	-2.57 ±	0.57 22	413 <u>+</u>	41.20 10 57.18 ±	5.46 to 36.15	<u>+</u> 7.49 649.6	<u>+</u> 24.09			
Horn Point	<u>-2.73 +</u>	0.32 12	242.84 <u>+</u>	34.40 ₩ 33.15 <u>+</u>	4.21 4.02	± 1.26 781.3	<u>+</u> 40.57			
Windy Hill	(0.63 ±	2.04 30	361 <u>+</u>	78.82 v 6.55 ±	53.33 18.79	<u>+</u> 7.25 467.2	<u>+</u> -140.23			
Ragged Pt.	⁷ -,94 <u>₹</u>	.87 93	596.36 <u>+</u>	231.25 39 -5.16 ±	3.65 27.35	<u>+</u> 8.40 409.5	<u>+</u> 68.55			
Maryland Pt.	-1.92 <u>+</u>	.26 ju	119.62 <u>+</u>	12.13 10-49.4 ±	1.25 2.51	<u>+ 1.90 333.9</u>	6 <u>+</u> 19.98			
Point No Point	68 <u>+</u>	.15 22	162.36 ±	3.04 266 ±	3.36 4.23	± 0.97 458.1	<u>+</u> 32.71			
R-64	-0.37 <u>+</u>	0.17 40	445.1 <u>+</u>	102.47 23-47.15 ±	7.59 91.14	± 24.28 704.2	8 <u>+</u> 160 .9 9			
R-78	$-1.16 \pm$.24 21	338.8 ±	13.15 4-66.59 ±	14.03 52.12	± 11.80 412.6	<u>+</u> 90.67			
Still Pond	-1.94 <u>+</u>	.48 25	96.38 ±	43.05 45 6.76 <u>+</u>	1.39 5.54	<u>+</u> 2.34 158.9	7 <u>+</u> 86.53			
				- 7						

. م

Table 6-1. Representative means and standard deviations $(X \pm S.D.)$ from triplicated flux measurements. Data are from SONE 8 (June, 1986).

29%

20%

the two-year period, was remarkably uniform (Table 6-2). These findings suggest that measurement errors were a minor and consistent component of total variability in the measured fluxes. The degree of seasonal and siterelated variability encountered during SONE monitoring, although large, is entirely consistent with previous measurements of sediment-water fluxes in Chesapeake Bay (Boynton and Kemp 1985) and other temperate estuaries (Nixon et al. 1976; Callendar and Hammond 1982).

In the following discussion several levels of aggregation are employed to examine spatial and time-dependent patterns in the benthic flux data: "mean station flux" refers to the average of all flux measurements made over the two-year period at an individual station; "mean monthly flux" refers to the baywide flux during a particular month averaged over all ten stations. The most aggregated level ("mean location flux") refers to the average of all fluxes made during the two-year period at one of three groups of stations: (1) Upper Tributary Stations (Buena Vista, Windy Hill, Maryland Pt.); (2) Lower Tributary Stations (St. Leonards Creek, Horn Pt., Ragged Pt.); and (3) Mainstem Bay Stations (Pt. No Pt., R-64, R-78). The upper bay region (Still Pond) was separated from the other mainstem stations and treated as a fourth group (comprising of only one station) because the characteristics of this region, (depth, sediment composition, and redox regime) are quite unlike those found in the deeper mainstem bay,

6.2 <u>Sediment Oxygen Demand (SOD)</u>

Rates of sediment oxygen demand (SOD) at SONE stations ranged from 0.1 -3.9 g 02 m⁻² d⁻¹, with most values falling between 0.5 - 2.5 g 02 m⁻² d⁻¹ (Fig. 6-2; Table 6-1). These rates of SOD are moderate to large relative to those reported for other temperate estuaries (Table 6-3). It is important to

note that SONE monitoring does not include winter measurements when SOD would be expected to be low (Boynton et al. 1980).

The overlapping confidence intervals shown in Fig. 6.1 indicates the two-year mean SOD's at individual stations are not significantly different. However, the data suggest a spatial pattern in which SOD tends to be highest in shallow tributaries and lower in the deeper mainstem Bay. Highest SOD's were always encountered at tributary stations (Fig. 6-3). When the data were even more highly aggregated (Table 6-4), mean SOD at the mainstem stations (excluding Still Pond) was significantly below the mean oxygen fluxes measured in the tributaries. We will show below that SOD is strongly influenced by the concentration of dissolved oxygen in near-bottom waters. Thus, low mean SOD of the mainstem and lower Potomac sediments can in part be attributed to hypoxic or anoxic condition of the near-bottom waters found at these sites in late spring and summer.

Our sampling schedule of four measurements per year, skewed heavily toward the warmer periods of the year, is not adequate to fully define annual patterns of benthic fluxes. However, some indication of seasonality in SOD is revealed when the data are averaged over all stations and years (Table 6-5; Figure 6-4). Bay-wide monthly mean SOD was highest in May (1.67 g 02 m⁻² d⁻¹) and appeared to <u>decrease</u> through the summer to a minimum of 0.79 g 02 m⁻² d⁻¹ in August. This suggests that factors other than temperature alone are regulating SOD during the late spring and summer. At this point we can speculate that decreasing organic deposition and low bottom water oxygen concentrations contribute to decreasing SOD observed along the mainstem in late summer. The interactions between SOD and bottom water quality are examined in Section 6-6) We note here that the range in SOD measurements (i.e., between station variability, Figure 6-2) was greatest in

Station	SOD g02/m Nican	2/ð ± SE)394 unol/ Fiean	'm2/h <u>+</u> SE	NO2+340 umo1/m Mean <u>+</u>	B 2/h _ SE	DDN unol/1 Nean	m2/h <u>+</u> SE	DIP umol/ Nican	m2/h <u>+</u> SE	Si umol/ Mean	m2/h <u>+</u> SE
1 ST. LEO. 2 EU. VISTA 3 HORN PT. 4 WINDY HILL 5 RACCED PT. 6 MD. PT. 7 PT. NO-PT. 8 R-64 9 R-78 10 STILL PD.	1.6 1.7 1.7 1.6 1.2 1.2 0.7 0.9 0.7 1.3	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	88 196 191 183 401 134 191 282 130 107	44 44 47 41 41 44 44 44 44	21.0 34.0 26.0 -1.7 -14.0 -15.0 -6.0 -14.0 0.2 -24.0	15 18 15 18 15 16 15 15 16 16	112 222 220 181 387 137 183 267 130 83	46 49 45 49 43 46 46 46 46	4.6 13.2 5.7 12.1 12.0 5.6 5.4 23.1 10.8 3.9	6.5 6.5 7.0 6.5 6.5 6.5 6.5 6.5 6.5	310 271 446 360 308 259 447 567 291 179	67 67 77 72 72 67 72 67 67

Table 6-2

Mean sediment-water fluxes of oxygen and dissolved nutrients at SONE stations in the Maryland portion of Chesapeake Bay. Entries give means and standard errors for spring through fall seasons, 1984-1986 (SONE Cruises 1-8). Table 6-3 Comparison of oxygen, DIN, and DIP at SONE monitoring stations with summer rates of oxygen and nutrient fluxes from various near-shore marine systems.

	SOD g/m2/d	NH4 Flux umol/m2/d	DIP Flux umol/m2/d	Ref
Loch Ewe, Scotland	0.6-1.05	20-80		1
Buzzard's Bay, MA	1.42	125	-15	1
Eel Pond, MA	1.08	85	16	1
Narragansett Bay, RI	1.80	200	30-50	1
Long Island Sound, CN		50-200	5-20	1
New York Bight, NY	0.84	25	2	1
Patuxent River Estuary, MD	3.03	710	48	. 1
Pamlico River Estuary, NC		45		1
South River Estuary, NC	1.57	250	17	1
Cape Blanc, West Africa		235	50	1
Vostoc Bay, USSR	1.08	150	20	1
Maisuru Bay, Japan		13-32		1
Kaneohe Bay, HA	0.46	54	3	1
La Jolla Bight, CA		40	6	1
Yaquina Bay mudflat, OR	-6.0-6.8	-91-204	-5-19	2
Chesapeake Bay, MD				
Upper tributaries	1.48	168	10	3
Lower tributaries	1.49	235	7	3
Mainstem bay	0.77	201	13	3
Upper bay (Still Pond)	1.30	107	3	3

References:

ices: 1, m

1, Modified from Table 1 in Nixon 1981

2, Collins 1986

3, Location means from SONE Monitoring, this report

(X 100) 150 UPPER TRIBS LOWER TRIBS 90 × з £ nol / w2 / h ~ STILL POND σ [₩] 60' -02 / **E**2 -MAINSTEM BAY 5 2 ⇒ 30 Þ c × • × ∍ 0 山 Þ _ 0 _ 0 ы. S ۱. -----۵. S H-30 0 LOCATION LOCATION LOCATION 750 180 790 130 . _550 _590 / 2∎ / 2∎ / 2∎ / 290 £ ~ <u>∽ 80</u> N 2 ~ ~ j 30 **_**₿50 Þ ∍ J • -20 × <u>,</u>150 × **2190** ⊐ _ _ L ц. L z z x +120 z --- 50 z-10

1

2

3

LOCATION

Box and whisker plots illustrating spatial patterns in benthic fluxes of oxygen and nutrients at four Figure 6-2. groups of SONE Monitoring Stations (Locations), August 1984 through June 1986. Pata for all years and stations combined by location. The box encloses 50% of the data for each location; the median is given by the horizontal line in the box; whiskers show the total range of values. Values greater than 1.5 times the 25th quartile (upper or lower extent of the box) are shown as asterisks. Locations are coded along the y-axis as follows: 1, upper tributary stations; 2, lower tributary stations; 3, mainstem Bay stations, 4, unper Bay (Still Pond) station.

LOCATION

5

LOCATION

ļ ļ.

Table 6-4. Mean spring through fall sediment-water fluxes of oxygen and dissolved nutrient at four classes of SONE stations located in the Maryland portion of Chesapeake Bay. Entries give the average fluxes and standard errors for data collected during SONE cruises 1-8, August 1984 through June 1986.

]

的复数的复数 建苯

			•						M	
	Location	SOD g O2m ⁻² d ⁻¹ Mean <u>+</u> SE	NH4 umo1 m ⁻² h ⁻¹ Mean <u>+</u> SE	NO2+NO3 umoT m ⁼ Mean <u>+</u>	2 _h -1 SE	DIN umol m-2h Mean <u>+</u> Sl	-1 DIP umol E Mean	m-2h-1 <u>+</u> SE	Si umo1 m ⁻² Mean <u>+</u>	n-1 SE
1.	Upper tributary Stations	1.48 0.17	168 30	4.6	10.1	178 32	10.2	3.9	293	43
2.	Lower Tributary Stations	1.49 0.16	235 30	11.2	9.0	246 30	7.2	3.8	357	41
3.	Mainstem Bay Stations	0.77 0.16	201 30	-7.0	9.2	193 30	13.1	3.8	429	41
4.	Still Pond Station	1.30 0.27	107 53	-24.0	16.6	83 52	3.9	6.5	179	70

Table 6-5. Monthly mean sediment-water fluxes of oxygen and dissolved nutrients at SONE stations in the Maryland portion of Chesapeake Bay. Entries give montly means for combined SONE stations, SONE Cruiese 1-8.

ţ

1

Ì

		SOD g02/m2	2/d	NH4 umol/n	n2/h	NO2+1 umo1,	103 /m2/h	DIN umol/m	12/h	DIP umol/m	2/h	Si umol/r	n2/h
	Month	Mean	<u>+</u> SE	Mean <u>-</u>	<u>-</u> SE	Mean -	E SE	Mean <u>+</u>	<u>SE</u>	Mean <u>+</u>	SE	Mean	<u>+</u> SE
5	May	1.67	0.17	148	31	-35.0	8.8	113	30	5.4	3.8	356	45
6	June	1.42	0.18	254	40	9.4	9.0	262	30	23.0	3.9	449	50
8	August	0.79	0.18	222	32	12.9	10.5	260	42	3.2	4.0	277	46
0	October	1.02	0.17	160	31	18.3	8.8	179	30	6.6	3.8	280	45

-

Figure 6-4. Box and whisker plots illustrating temporal patterns in benthic fluxes of oxygen and nutrients at SONE monitoring stations for the period of August 1984 through June 1986. Data for all stations and years combined by month. Interpretation of plot is given in legend of Fig. 6-2.

}

}

)

}

June and smallest in August, suggesting that the summertime drop in SOD is not restricted only to the mainstem bay. At this highly aggregated level we are certainly obscuring finer scaled seasonal patterns and year-to-year difference at individual stations. Year-to-year differences and spatial trends in SOD should emerge as more data become available.

6.3 Dissolved Inorganic Phosphorus (DIP) Flux

During the first two years of SONE monitoring DIP fluxes ranged from sediment uptakes of nearly -30 ug-at $m^{-2} h^{-1}$ at Maryland Pt. and R-64 in August 1984 to sediment releases of DIP of over 90 ug-at $m^{-2} h^{-1}$ at R-64 in June 1986. In spite of this wide overall range, fluxes of DIP were generally positive, that is, DIP was usually released from the sediment to the overlying water (Fig. 6-1) and most DIP fluxes fell in the range of 0-35 ugat $m^{-2} h^{-1}$ (Fig. 6-2). Two-year mean DIP fluxes at the ten SONE stations ranged from about 4 ug-at $m^{-2} h^{-1}$ at Still Pond to over 20 ug-at $m^{-2} h^{-1}$ at R-64 (Table 6-2). Highest positive DIP fluxes occurred along the mainstem bay in June with DIP fluxes at R-64 tending to be highest throughout the monitoring period (Fig. 6-1). Least variability in DIP fluxes occurred throughout the bay in May during both 1985 and 1986 (Fig. 6-3, Table 6-5). There was little other indication of seasonality in DIP fluxes during the spring-to-fall period covered by SONE monitoring.

Finding the mechanisms that seem to "turn on" and "turn off" DIP fluxes is clearly crucial to understanding phosphorus dynamics at the sediment-water interface. We will show below that the redox environment of the sediment and overlying water is one such important factor, particularly in the mainstem bay. However, the DIP flux data collected to date suggest that the mechanisms regulating DIP fluxes probably differ at various locations within the bay. For example, DIP fluxes tend to be

highest along the deeper reaches of the mainstem bay and the upper tributaries (Table 6-4). The release of DIP from sediments along the deep mainstem bay is most likely associated with the drop in redox potential that accompanies the depletion of oxygen in the overlying water. Such release of DIP from sediments during anoxic conditions is a well known process in lakes and fjords and involves the redox-driven dissolution of iron phosphates and other compounds (Krom and Berner 1980; Klump and Martens 1981). It seems unlikely that a similar mechanism controls the relatively large fluxes of DIP from sediments in the upper tributaries because the overlying water in these regions is always well-oxygenated.

While we are unable at this point to clearly define the processes that regualte DIP fluxes, the magnitude of these fluxes are often sufficient to influence the concentration of DIP in the overlying water (Nixon et al. 1980). Consequently, the benchic flux of DIP could influence the amount of DIP available for phytoplankton production, as well as contributing to the availability of DIP relative to DIN.

6.4 Dissolved Silicate Flux

Dissolved silicate was almost always released from estuarine sediments to the overlying water (Fig. 6-1) as has been reported previously in the Bay (Boynton and Kemp 1985). The majority of fluxes fell within the range of 100 - 500 ug-at $m^{-2} h^{-1}$ (Fig. 6-2). Given the shallowness of the bay it seems likely these benchic fluxes represent a significant source of silica (D'Elia et al. 1983).

Within-station variability in silicate flux tends to mask expected spatial and seasonal patterns (Fig. 6-1, Tables 6-4; 6-5). Highest fluxes were generally found along the deep mainstem bay and lowest generally occured in the low-salinity upper bay (Still Pond) and upper tributaries. This

pattern is borne out when the data are highly aggregated into location means (Table 6-4) which parallel increasing salinity; Still Pond < Upper Tribs. < Lower Tribs. < Mainstem Bay. This pattern is consistent with a conceptual model which would predict increasing silicate dissolution as silica deposition from diatom frustules increased along an estuarine salinity gradient (D'Elia et al. 1983).

6.5 Fluxes of Inogranic Nitrogen

6.5.1 <u>Ammonium Flux</u>

-

The results of SONE monitoring are consistent with earlier studies in Chesapeake Bay (Boynton et al. 1980) and elsewhere (see Zeitzschel 1980) in showing that ammonium dominates benthic flux of fixed inorganic nitrogen in productive temperate estuaries. The release of ammonium from sediments at the SONE stations were generally many times greater than the net exchange of nitrate + nitrite (N + N) and on occasion, ammonium flux exceeded N + N flux by several orders of magnitude. Averaged over all stations and times, ammonium flux accounted for about 80% of the total exchange of fixed inorganic nitrogen across the sediment-water interface. Total DIN flux (sum of ammonium + N + N fluxes) is therefore dominated by ammonium flux. DIN flux plots in Figs. 6-1, 6-2, 6-3 and 6-4 are therefore nearly indistinguishable from the accompanying ammonium plots.

Ammonium fluxes at individual SONE stations ranged from lows of 20 - 30ug-at m⁻² h⁻¹ (St. Leonard and R-78 in October 1984) to mid-summer highs of over 600 ug-at m⁻² h⁻¹ (Fig. 6-3). Using earlier work in the Patuxent River as a guide, we would have predicted higher fluxes in the lower salinity reaches of the tributaries. Contrary to expectation, the ammonium fluxes revealed no obvious spatial pattern. In fact, fluxes in the lower Potomac at Ragged Pt. were significantly greater than those found at the other SONE

monitoring stations (Fig. 6-1, Table 6-2). The reasons for this are not entirely clear, but in the sections that follow we will show that ammonium fluxes can be correlated with the nitrogen content of sediments, redox regime of the sediments and overlying water, activity of the benthic organisms, and the rate of deposition of particulate nitrogen.

6.5.2 <u>Nitrate + nitrite (N+N) flux.</u>

Unlike ammonium, N+N fluxes exhibited strong seasonal and spatial patterns (Fig. 6-1, 6-4) and shifts in direction of the fluxes across the sediment-water interface. N+N was generally released from the well-oxidized sediments found in the Patuxent and Choptank Rivers, and taken up by sediments found in the Potomac and along the mainstem Bay (Tables 6-2, 6-4). Maximum positive N+N flux (a net release of nearly 150 ug-at $m^{-2} h^{-1}$) was found in the lower Choptank (Horn Pt.) in June 1985. Greatest N+N uptake (lll ug-at $m^{-2} h^{-1}$) occurred in the Lower Potomac (Ragged Pt.) in May 1986. Nearly all N+N fluxes fell between -70 to 70 ug-at $m^{-2} h^{-1}$ (Fig. 6-3). Figure 6-3 shows that N+N uptake by the sediments was most prevalent during spring (May) while N+N fluxes were generally positive and remarkably uniform in late summer (August). Bay sediments taken as a whole appear to shift from N+N uptake in spring to N+N release in late summer and fall (Table 6-5).

The net N+N flux reflects the combined effects of chemical and biological factors that regulate ammonium production, nitrification, denitrification, and the fluxes of solutes across the sediment interface. Nitrate concentration in waters over the sediments can influence the measured rate of N+N uptake by limiting the amount of nitrate available for nitrate metabolism (and denitrification) as well as influencing diffusion-driven fluxes of nitrate at the sediment surface. Oxygen concentration and redox regime also undoubtedly help regulate N+N dynamics. Ammonium oxidation is

the first step in the formation of nitrate. We have shown that sediments throughout the bay produce an abundance of ammonium, so it seems unlikely that nitrate formation is limited by ammonium availability. However, nitrification is an obligately aerobic process, while nitrate metabolism occurs under anaerobic conditions. We can speculate that the net releases of N+N observed in the Patuxent and Choptank tributaries reflect predominately oxidized environments both in the surficial sediments and the overlying waters. Such conditions would favor sediment-associated nitrification and the net release of nitrate from the sediments. At other locations in the Bay, the redox environment appears to shift between oxic and anoxic conditions, the former favoring nitrification, the latter nitrate metabolism and denitrification. Nitrate formation and consumption appear at times to be in balance. This results in no net flux of N+N at the sediment surface. Elsewhere, particularly along the mainstem bay where hypoxic and anoxic conditions prevail during the summer, the balance apparently shifts toward nitriate metabolism and in the net removal of N+N from overlying water. The rate of N+N uptake must ultimately be limited by N+N availability, hence the rates of nitrate reduction and nitrification would be expected to be strongly coupled.

6.6 Factors Influencing Benthic Fluxes of Oxygen and Inorganic Nutrients

Relationships between sediment nutrient fluxes and various environmental factors such as water temperature, water depth, sediment characteristics, mixed layer depth, and rates of organic matter input have been reported for nearshore ecosystems (e.g. Hargrave 1969, Nixon et al. 1976, Hammond et al. 1985) In an initial attempt to identify sources of variability in the SONE flux data, and to eventually develop a predictive model of sediment-water exchanges, we examined the benthic flux data for correlations with a suite of

relevant ecological factors. At this stage these analyses have been conducted at a fairly high level of aggregation using mean fluxes and searching for simple correlations that hold throughout the bay. This approach undoubtedly glosses over many subtle features of the data, especially station-specific trends, year-to-year variations, and mutivariate responses. Nevertheless, some intriguing features of the data have emerged from this exploratroy approach.

Contrary to expectation, we found no significant single-variable correlations between sediment-water fluxes and any of the following environmental variables: bottom water temperature, salinity, water depth, the concentrations of dissolved nutrients either in the bottom water or initially present in the sediment flux chambers, and the Eh of bottom water or surficial sediments. However, intriguing relationships did emerge from regressions of sediment-water fluxes on (1) surficial sediment ntirogen content, (2) bottom water oxygen concentrations, and (3) rates of particulate nutrient deposition. These findings are discussed below.

6.6.1 Sediment Characteristics and Relationships With SONE Fluxes.

As a first approximation the amounts of particulate carbon (PC), nitrogen (PN), and phosphorus (PP) found in estuarine sediments reflect the long-term net effects of the opposing processes of organic matter deposition and diagenesis (remineralization). We therefore suspected that some relationships might exist between the organic deposition rates, benthic nutrient fluxes, and the resulting organic composition of the sediment. Some substantial support for this concept emerged from the SONE data.

Surficial sediments at SONE tributary stations generally contained 2-3% total particulate carbon (Fig. 6-5). There were two notable exceptions that appear related to areas of sediment accumulation: sediments at Windy Hill in the upper Choptank (about 5% PC) apparently receive considerable detrital organic material from bordering marshes; sediments in the lower Potomac at Ragged Pt. are also fairly carbon rich (about 4% PC) perhaps because the hydrography of that region favors either the sedimentation or preservation of relatively organic rich material. Sediment PC decreased in a regular north-to-south fashion along the mainstem Bay from about 4.5% PC in the upper bay at Still Pond to about 2.5% PC at our southernmost station near Pt. No Point. Sediment PN and PP exhibited significantly different spatial patterns (Fig. 6-5). Although the sediments at Windy Hill and Ragged Pt. were relatively nitrogen rich compared with that found at the other tributaries, sediment PN increased from Still Pond to the mainstem station at R-64. Sediment PP presented an altogether different pattern (Fig. 6-5): upper tributary sediments were consistently enriched in PP relative to the sediments found downstream. Sediment PP appears to remain essentially uniform in the mainstem bay.

The abundances of C, N, and P in sediments at the SONE monitoring stations suggest that the sediments accumulating in the upper tributaries and perhaps the upper mainstem are enriched in carbon and phosphorus relative to nitrogen. These patterns can also be seen in the sediment property plots shown in Fig. 6-5. Sediments from the lower tributaries and lower mainstem bay (Locations 2 & 3) are the most rich in nitrogen relative to carbon. Sediments from the upper tributaries and Still Pond (Locations 1 & 4) form groups of points well below (i.e., depleted in nitrogen) the main group representing the mainstem and lower tributaries.

. Upper panels (a,b,c) show particulate carbon (PC), particulate nitrogen (PN), and particulate phosphorus (PP) content of surficial sediments obtained during SONE flux monitoring, August 1984 through June 1986. SONE stations coded along the x-axis as in Fig. 6-1. Lower panels (d,e,f) show the stoichiometric relationships between sediment PC, PN, and PP. Data are coded for location as in Fig. 6-2. The diagonal lines in the lower series of panels show the appropriate Redfield element ratio. The clusters of points enclosed by dashed lines are meant to assist in observing groupings of data. These clusters have no statistical signicance. Similarly, plots of PP vs. PN and PP vs. PC (Fig. 6-5) illustrate that the sediments from the upper tributaries are rich in PP relative to PN and PC compared with sediments from the mainstem bay. Deposition of carbon and phosphorus via sorption, flocculation, and perhaps precipitation reactions in the low-salinity reaches of the tribuataries and bay are probably responsible for the observed sedimentation patterns of these elements. There are two explanations for the apparent discrimination against nitrogen in the sediments of these regions. The sediments may simply reflect the deposition of terrestrial or fluvial sediment. On the other hand, organic nitrogen may be preferentially remineralized in these sediments and returned to the water as some form of dissolved inorganic nitrogen. (Boynton and Kemp 1985).

Returning to the main point of this section, the relationships between sediment composition and benthic fluxes of oxygen, DIN, and DIP are shown in Figs. 6-6. Although some locations tend to separate into groupings of points (for example, SOD along the mainstem bay and DIP in the upper tributaries) these scatterplots reveal no consistent relationships between the carbon content of the sediment and SOD, or the phosphorus content of the sediment and DIP flux. This finding agrees with earlier studies that reported little or no relationship between benthic community metabolism and most sediment characteristics (Pamatmat 1977).

On the other hand, the positive correlation between DIN flux and the sediment PN content was quite good (< = 0.51, P > 0.01). To our knowledge this is the first time this type of relationship has been found. We suggest that the correlation between DIN flux and sediment PN can best be attributed to the effects of oxygen concentration on the net

Figure 6-6. Scatter plots illustrating the relationships between oxygen, DIN, and DIP fluxes with sediment PC, PN, and PP content (upper panels) and bottom water oxygen concentration (lower panels). Horizontal lines within a plot provide reference to zero flux. Data are coded for location as in Fig. 6-2.

products of microbial nitrogen transformations in the sediment. The layering of aerobic water and sediments over deeper anaerobic sediments favors the loss of fixed nitrogen from the sediment via the following reaction sequence: ammonium formation —> ammonium oxidation and nitrification —> nitrate reduction and denitrification. Nitrification ceases when both sediments and overlying water are anoxic. Denitrification also ceases when the supply of nitrate is cut off. Thus, under anoxic conditions the reaction sequence stops at ammonium production. Nitrogen remineralization appears to be less complete under anaerobic conditions. Fixed nitrogen therefore tends to accumulate as sediment conditions become more reducing.

6.6.2 Correlations Between Benthic Fluxes and Other Environmental Variables

Correlation analysis (Table 6-6) revealed some intriguing patterns of possible relationships among benthic fluxes and a number of relevant environmental variables. In general, SOD and ammonium fluxes seemed to correlate best with ambient water and sediment characteristics while N+N and silicate fluxes showed the least overall relationship with simple environmental factors.

For the purposes of OEP monitoring, the relationships between bottom water oxygen concentration and benthic fluxes demands particular attention. Figure 6-6 shows the general form of the relationship between SOD and bottom water oxygen concentration. Low SOD measurements were (with three exceptions) associated with concentrations of oxygen below about 1 mgl^{-1} . Within a wide envelope associated mostly with the high SOD in tributaries sediments (Groups 1 and 2), SOD generally increased as bottom water oxygen increased. This relationship was strongest along the mainstem bay. Sufficient dissolved oxygen in bottom waters therefore

Table 6-6. Matrix of correlation coefficients (r) showing the bi-variate relationships among sediment fluxes and routinely measured environmental parameters. Correlations that were significant at the 95% confidence level are indicated with three asterisks. Inverse relationships are indicated with a minus (-) sign.

SOD	Ammonium (N+N) Flux Flux	DIP Flux	Silicate Flux
SOD	an a		
Ammonium flux			
(N+N) flux ***			
DIP flux -	***		
Silicate flux	***	***	
Bottom water diss. oxygen ***	_***	_***	· : .
Bottom water ammonium _***	***	***	
Bottom water (N+N)	_***		***
Bottom water DIP			
Bottom water silicate			
Bottom water temperature	***		•
Bottom water salinity***	***		
Bottom water Eh			
Surf. sed. Eh ***			
Surf. sed. PC			
Surf. sed. PN	***	***	
Surf. sed. PP			
Surf. sed. Chl s	_***		· · · · ·

appears necessary for high rates of SOD, but other factors clearly contributed to high rates of SOD periodically observed in the tributaries.

The relationship between bottom water oxygen and DIN flux was statistically significant and opposite that of SOD and dissolved oxygen (Table 6-6, Fig. 6-6). In spite of considerable scatter in the data from the tributaries, DIN flux was generally greatest when bottom water oxygen content was low. The inverse relationship between DIN flux and bottom water oxygen was strongest along the mainstem bay. This, we think, offers further evidence for the coupling of inorganic nitrogen remineralization and redox status of sediments discussed above: high ammonium fluxes along the mainstem bay appear related to low oxygen conditions. Conversely, low DIN flux, due to a combination of low ammonium flux from the sediments and negative N+N fluxes (i.e., sediment uptake) occur when oxygen concentration of bottom waters is high.

Several factors appear to contribute to a complex relationship between DIP flux and bottom water oxygen (Fig. 6-6). High DIP fluxes along the mainstem bay occur when hypoxic or anoxic conditions prevail in the overlying water, but low oxygen conditions are not always accompanied by high DIP fluxes. Benthic DIP fluxes in the lower tributaries and along the mainstem bay were generally less than 15 umol $m^{-2}h^{-1}$ when oxygen in the overlying waters exceeded 4 mgl⁻¹. However, significantly higher fluxes occurred occassionally in the upper tributaries. The origin of these spikes in DIP release is not known.

6.7 Relationships Between Benthic Fluxes and Nutrient Deposition at R-64

At the center of the Ecosystems Processes Component of the OEP monitoring program, and in fact the entire concept of benthic-pelagic coupling, is the assumption of a functional relationship between benthic nutrient flux and the deposition of organic matter at the sediment-water interface. Direct evidence supporting this assumption has rarely been demonstrated because both nutrient flux and organic deposition must be determined simultaneously, as we have done with the sediment trap deployments and benthic flux measurements at mid-bay station R-64. The data from R-64 do indeed support the hypothesized coupling of benthic and pelagic components in the bay.

As shown in Fig. 6-7, there are good linear relationships between the amounts of PC and collected in the mid-water sediment traps and the benthic fluxes of oxygen and ammonium. The relationships between PP deposition and DIP flux appear to be more complicated, but here also a general trend is apparent. As predicted, SOD generally increased as the deposition of PC increased. The regression of SOD on PC deposition is admittedly influenced by one particularly high measurement, but we have no reason to suspect that measurement is wrong.

The simple linear relationship between PN deposition and ammonium flux is striking both because of how good (with one exception) the relationship appears to be, and also because the trends for both ammonium and DIP fluxes are opposite that of SOD and therefore opposite what we would have predicted. At this point we cannot rule out the possibilities that the observed relationships are fortuitous or due to the co-varience of the two variables with another factor, such as dissolved oxygen. The inverse relationship between ammonium flux and dissolved oxygen was discussed above. We note here that highest ammonium fluxes occurred in

Figure 6-7.

Scatter plots showing the relationships between rates of particulate carbon, nitrogen, and phosphorus deposition and benthic fluxes of oxygen, ammonium, and DIP, respectively, at mid-Bay station R-64. Closed circles show the deposition rates to mid-depth sediment trap cups during the week prior to the corresponding benthic flux determination. Open circles give the deposition rate averaged over the month prior to the benthic flux determination.

June when bottom waters at the station were nearly anoxic. Conversely, low ammonium fluxes occurred in May, following the spring diatom bloom, when oxygen in the column was higher. The mechanisms producing the observed patterns are therefore still obscure.

6.8 Nutrient Stoichiometries at Station R-64

Over fifty years ago, Redfield and others discovered that nutrient elements were extracted from and returned to sea water in constant proportions that reflected the average elemental composition of planktonic organisms (Redfield 1934; Redfield et al. 1963). The method of examining stoichiometric relationships between oxygen, carbon, nitrogen, and phosphorus (0:C:N:P ratios) continues to be a useful means of examining the coupling of energy flow and nutrient cycles in various compartments of an aquatic system. Such analysis has been largely responsible for the current focus on estuarine sediments as sites of important nutrient transformations (Nixon and Pilson 1984).

The synoptic sampling strategy adopted for SONE and VFX monitoring at Station R-64 allows us to assemble a rather complete stoichiometric model for the formation, deposition, and remineralization of organic matter in the central meso-haline region of the bay. Nutrient ratios of suspended particulate matter, material collected in sediment trap cups, and surficial sediments have already been described and with few exceptions these plots revealed regular and statistically significant relationships between carbon, nitrogen, and phosphorus. Element-element plots for benthic fluxes throughout the bay exhibit considerably more scatter and, with one important exception (DIN vs. DIP flux) do not reveal statistically significant stoichiometric relationships. The exception was the predictive regression of DIP flux on DIN flux (Fig. 6-

8). This produced a significant correlation (Table 6-6), and a linear regression coefficient for DIN/DIP fluxes equal to 15.7, exactly the Redfield Ratio.

In spite of the lack of linearity, the plots of ammonium and DIN fluxes against SOD (Fig. 6-8) indicate that benthic fluxes throughout the bay tend to be nitrogen-rich relative to Redfield-type organic matter. Most points fall above the line giving Redfield's N:O ratio. This suggests that, in a manner opposite that found in other temperate estuaries (Nixon and Pilson 1984), more ammonium appears to be leaving the sediment than would be predicted based on the simple areobic decomposition of Redfield-type organic matter. A discussed below, this does not appear to be due to the deposition of exceptionally nitrogenrich organic matter. It more likely suggests that anaerobic metabolic processes, such as sulfate reduction, may be responsible for a significant fraction of nitrogen remineralization in the sediments and that the reduced products of these processes, such as sulfides, are not contributing significantly to SOD. Our SOD measurement may therefore be underestimating total sediment metabolic activity, especially when when the waters over the sediments are hypoxic or anoxic.

The results of the stoichiometric regressions revealed the following features of nutrient biogeochemistry in the mid-bay region (Fig. 6-9). First, particles suspended in the water column have relatively high C/P and N/P ratios, suggestive of detritial material, and organic matter of low overall nutritional "quality". The similarity of the C:N:P ratios of the seston with surficial sediments is notable, and suggests that the suspended sediment load, even in surface waters, may contain a considerable fraction of resuspended sediment. Differences between the

Figure 6-8. Selected scatter plots showing the relationships among the benthic flux of oxygen, various forms of inorganic nitrogen, and inorganic phosphorus. Flux data are coded for location as in Fig. 6-2. Horizontal lines within a plot provide reference to zero flux. Diagonal lines in plots a, c, and e, show the appropriate Redfield ratio. Dashed lines enclose data that appear to cluster by location.

~

Figure 6-9. Average stoichiometric model of suspended particulate matter, sedimenting particulate matter, surficial sediments, and benthic nutrient fluxes in the mid-Chesapeake Bay region. Element ratios given in the figure are based on the predictive linear regression coefficients of nutrient pairs that provided statistically significant (95% confidence) correlations.

nutrient ratios of suspended seston and the material collected in both the middle and bottom sediment traps are also striking. The material collected in the traps follows Redfield's ratios almost exactly, suggesting the deposition of material that appears to be very much like nutrient-replete planktonic organic matter; material that is far richer in both nitrogen and phosphorus than suspended seston.

Finally, perhaps the most significant result of our stoichiometric analysis is the extraordinary similarity in the ratio of fluxes of nitrogen and phosphorus into and out of bay sediments. Both the deposition and remineralization of these nutrients appear on average to be in relative balance, and to follow the Redfield ratio of 16:1. This finding runs counter to the prevailing view that estuarine benthic fluxes are usually anomalously low in nitrogen relative to the Redfield ratio. Several scenarios could be offered to explain this difference. The simplest, it seems to us, is to suggest that this region of Chesapeake Bay is more nitrogen-rich than expected.

7. <u>Seasonal Evaluations of Sediment and Depositional Processes</u> on Water <u>Ouality Conditions</u>

In this section a series of seasonally averaged budgets are presented for purposes of putting into perspective the relative influence of sediment deposition and benthic fluxes on water quality conditions in portions of Chesapeake Bay. The first of these budgets compares the magnitude of deep-water oxygen stocks with sediment oxygen demand (SOD) for several different periods of the year at stations which often experience hypoxic or anoxic conditions. The second summary is similar but focuses on the impact of sediment-water fluxes of NE_4^+ and $NO_3^$ relative to stocks in the water column and estimated phytoplankton demand. The final summary considers the degree of water column-benthic coupling at a deep station (R-64) in the mainstem of the Bay.

Estimates of the influence of SOD on deep-water oxygen stocks at several monitoring stations are given in Table 7-1. There was considerable variability among stations and seasons in the height of the deep layer (i.e., distance from the sediment surface to the pycnoclcine). The combination of changing deep layer depth and ambient oxygen concentrations in this layer produced large seasonal excursions in the magnitude of deep-water oxygen stocks. For example, the oxygen stock at R-64 ranged from about 75 g m⁻² in May to 4 g m⁻² in June (Fig. 7-1). At all deep stations, oxygen stocks were high in fall and early spring and low in summer, paralleling the pattern observed for oxygen concentration.

The relative influence of SOD on oxygen stocks is expressed as the portion of the deep water oxygen stock consumed in SOD per day. As shown in Table 7-1, values range from 2-16% per day. At all stations examined there was a clear seasonal trend in the relative influence of SOD: even when SOD rates were high, SOD influence on dissolved oxygen stocks was

Dissolved oxygen characteristics in deep waters at station R-64.

Figure 7-1.

so Table 7-1. Potential influence of SOD on deep-water oxygen stocks at SONE stations experiencing significant seasonal stratification of the water column. Deep-water oxygen stock calculated by multiplying the height of water beneath the pycnocline by the mean O_2 concentration in this water mass.

	Height of	Deep-Water	Sediment	SOD:Deep-Water
	Deep Layer	Oxygen Stock	Oxygen Demand	Oxygen Stock
Station Date	(m)	$(g0_2 m^{-2})$	(g0 ₂ m ⁻² d ⁻¹)	(đ ⁻¹)
Pt. No. Pt. Aug 85	4.3	15.5	-0.52	0.03
Oct 85	4.1	23.8	-1.05	0.04
May 86	5.4	47.5	-1.03	0.02
June 86	3.4	9.8	-0.68	0.07
R-64 Aug 85	6.5	$ \begin{array}{c} 8.5 \\ 32.0 \\ 74.6 \\ 4.2 \\ \end{array} $	-0.68	0.08
Oct 85	6.8		-1.04	0.03
May 86	10.5		-1.81	0.02
June 86	7.0		-0.37	0.09
R-78 Aug 85	5.5	4.4	-0.35	0.08
Oct 85	8.0	34.4	-0.78	0.02
May 86	8.0	18.4	-0.79	0.04
June 86	7.4	13.3	-1.16	0.09
Ragged Pt. Aug 85	2.5	8.5	-1.42	0.16
Oct 85	10.3	52.0	-0.86	0.02
May 85	10.5	75.6	-2.35	0.03
June 86	3.5	10.9	-0.94	0.09

low if the deep waters were well oxygenated. Conversely, SOD influence was high when the deep water stocks of oxygen were small. The conclusion we draw from these data is that SOD is an important O_2 sink at these stations throughout the year, but it is particularly important during the spring when deep waters are becoming hypoxic and during the summer when hypoxic or anoxic conditions prevail at these locations. Our ability to assess the relative importance of SOD in O_2 dynamics of the deeper areas of the Bay would be enhanced if direct measurements of water column O_2 consumption were also routinely made. Such an addition to the program would also be useful in development of water quality models.

The second evaluation involves a comparison of N and P stocks and selected rate processes in the surface mixed layer and deep waters at station R-64. In this evaluation, N stocks (NH_4^+, NO_3^-) and PN) in the deep and surface layers are compared to the phytoplanktonic demand for inorganic nutrients and contrasted to the rate of loss of PN to deep This analysis shows that the total supply of waters (Table 7-2) dissolved inorganic nitrogen is sufficient to supply phytoplanktonic nutrient demand for only short periods of time (hours to days) for all seasons of the year except the early spring when fluvial inputs of nutrients (primarily NO_3^{-}) dominate. However, the nitrogen stocks in deep waters are much more substantial and satisfy phytoplanktonic demand for periods of time 2-20 times longer than could the supplies in surface waters. One of the more interesting things to come out of these calculations is the observation that during those times of the year that plankton production is highest (i.e., June-August) nutrient stocks in the upper mixed layer are smallest. While nutrient stocks in the deep layer are not huge at these times they represent a substantial nutrient source,

		Surface Mixe	<u>d Layer</u>		Desp-Water Layer					
•	Height of Layer	Nutrien Stocks NH ₄ NO ₃	nt s PN	Hrytopik. N- Demand NH ₄ + NO ₃	Height of Layer	Nutrient Stocks NH4 NO3 PN	Deposition of PN			
Date	(m)	(mg-at m	2,	(mg-at m ⁻² d ⁻¹) ^a	(m)	(mg-at m ⁻²)	(mg-at m ⁻² d ⁻¹)b			
Aug 85	10.0	2 29	136	26	6.5	138 15 22	8.3			
Oct. 85	10.0	16 54	136	21	6.8	94 21 45	9.1			
May 86	6.0	11 254	299	28	10.5	160 214 251	11.8			
June 86	10.0	6 5	209	34	7.0	191 20 55	7.7			
		TTT E			2	1351				

Table 7-2. A comparison of N and P stocks and selected rates in the surface mixed layer and deeper waters at station R-64 in the mainstem of Chesapeake Bay.

(a) Meen of 3 previous measurements; assumes C:N ratio (atomic) of 6.6

(b) Mean of previous 3 measurements.

being of a magnitude capable of supporting demand for periods approaching a week. A major question here concerns the manner in which the nutrientrich deep waters reach the euphotic zone. Recent work by Malone et al. (1986) suggests that cross-Bay tilting of the pycnocline may be an important mechanism by which deep water nutrients are transported to euphotic waters. Additionally, they found that the frequency of these events were on the order of days to a week in the summer. This is in good agreement with estimated demand for nutrients for phytoplankton production.

These calculations suggest a possible explanation of the seasonal rattern of phytoplankton production generally seen in the mainstem regions of the Bay. In the spring (April-May) there is a bloom which is largely supported by nutrients (especially NO₃⁻) from terrestrial Nutrient concentrations are typically high in the surface sources. layer, as are standing stocks of phytoplankton. Additionally, the pattern is of sustained high production rates and stocks -- there are few indications of boom and bust cycles. In contrast, during the summer period production is often high but the pattern of production is erratic - there are times of very high and low rates - often separated by only a week or so. This pattern continues for several months. The erratic summer signal suggests that there are strong couplings between the upper mixed layer and deeper waters relative to nutrient supplies for primary productivity. Our model is that during the spring period euphotic waters are nutrient sufficient and hence there is a sustained bloom. During the summer there are only temporary periods of nutrient sufficiency in euphotic waters. These periods are directly related to events which deliver nutrient-rich bottom waters to the euphotic zone -- and hence the erratic nature of summer production.

There are several pathways missing from this conceptual model which may have important implications in terms of water quality management and food-web dynamics. First, we have yet to consider the impact of zooplankton grazing. Is the spring bloom sustained because the grazing rates are low? Are the erratic summer patterns the result of differential grazing rates? As we continue to integrate various portions of the monitoring program it is likely that answers to these questions will become available.

The final point related to Table 7-2 concerns the relative amounts of inorganic nitrogen used by primary producers vs. the amount of PN lost from the euphotic zone. This comparison represents the net exchange of dissolved nutrients available to support production and the net loss of nutrients in the particulate form to deeper waters. The seasonal data suggest a substantial loss of PN to deeper waters during all seasons, with losses being somewhat larger in fall and early spring (40%). During summer, losses seem slightly smaller. Again, these observations are consistant with the conceptual model. In the fall and early spring, when metabolic rates are slowed by low temperatures and the lack a of strong pycnocline, there is substantial vertical transport of particulates from the surface layer to deeper waters; during summer periods, when temperatures are higher and the density structure typically stronger, there is less transport of PN to deeper waters. The suggestion here is that there is very substantial reprocessing of organics at or near the stratification depth during the warm portion of the year.

In the final summary we have evaluated several aspects of benthicpelagic coupling at a central Bay location (Table 7-3). During the seasons considered, there was a considerable percentage of primary production deposited to deeper waters. For example, the percentage of PC

Date	Hytop <u>Nutrie</u> C	lk. Prod nt <u>Dener</u> N	d. (C) and <u>nd (N,P)</u> a P	O Dago C	rgani ositi N	c on ^b P	Percent: C <u>Deposited</u> C	Deposited <u>Consumer</u> C	1C ≩C	Deposi <u>Remine</u> N	ted N & ralized P	P	Benthic R <u>Phytopla</u> N	emineralization: nkton <u>Demend</u> P
	(r	rg m ⁻² c	1 ¹)	(ng	m ⁻²	đ ⁻¹)	(%)	(ફ)		(£)			(8)
Aug 85	2100	375	51	756	116	19	36	34	914 45	110	105		34	39
Oct 85	1700	304	41	946	128	22	56	41	21	91	22		38	13
May 86	2190	391	53	1380	222	21	ഒ	49	* 1	30	0		17	0
June 86 (ave)	2627	469	64	639	106	9	24	21	Q X	92	744	1	21	106
(ærly)	3844	686	94	511	84	7	13	27		115	971		14	72
(late)	1410	252	34	704	119	10	50	19	•	82	680		38	200

Table 7-3. Summary of measured and calculated benthic-pelagic processes at a central bay location (R-64) for the period Aug. 1985 - June 1986.

^a Hytoplankton production data from Selner et al. (CEP Monitoring Program); phytoplankton N and P demand calculated assuming a phytoplankton composition ratio (C:N:P) cf 41:7.3:1 (weight).

^b See vertical flux section of this report.

1

^C Calculated using SCD data collected in this program; calculation assumes an RQ of 1.0, and hence 1902=0.379C.

deposited ranged from 24-63% of water column primary production. Again, there were some notable seasonal trends. It appears that deposition was high when the water column was well mixed (May and October) and lower during periods when stratification was well developed (June and August). A probable explanation for these observations involves both biological and physical aspects of the system. We suspect that during well-mixed (and cooler) periods organic matter produced in the euphotic zone is either grazed and transformed into rapidly sinking particles or simply settles quickly because of the generally larger sizes of particles. As a result, a large percentage of production reaches the bottom. However, during the summer the situation is quite different. During this period the water column is well stratified and bacterial metabolism is high. It appears that much of the sedimenting material is utilized in the vicinity of the pycnocline resulting in a smaller percentage of the overall production reaching the bottom. Of the material reaching deep waters or the bottom a rather small percentage (20-50%) appears to be consumed in aerobic metabolism. The question which emerges here concerns the fate of the remaining deposited material. It appears from earlier studies (Boynton and Kemp, 1985) that little of this material is buried in the accreting sediment column. Even with this sink, much of the organic matter reaching deep waters must be involved in other metabolic reactions. The most probable involves the use of this material in SO_4 reduction under anaerobic conditions in the water column or sediments. In this situation SO_{4} serves as a terminal electron acceptor in the oxidation of organic material by anaerobic bacterial communities. The recent work of Tuttle et al. (1986) in this area of the Bay strongly supports this point of view. Hence, it appears that there are several

distinct pathways through which deposited organics can be utilized in the deeper waters of the Bay. Only the former tends to lead to larger organisms of commercial interest — all pathways act to use almost all of the organic matter produced — and these different pathways have an important influence on the way in which particulate nutrients (N and P) are transformed in sediments and interact with overlying waters.

In addition, there was a seasonal pattern in the releases of nutrients from sediments to water column. In the case of NH_A^+ , there was almost 100% return relative to deposited materials in the late spring and summer -- while in the early spring (May) there was a clear decrease in the flux of NH_4^+ from sediments to water relative to the amount of organic material deposited. In the case of P-remineralization, the pattern was one in which P was generally not released from sediments during the spring and fall. In contrast, P release from the sediment during the summer and late spring equaled or greatly exceeded the amount estimated as having been recently deposited. A possible explanation for these observations involves the oxygen condition of overlying waters and sediments. During periods when O_2 concentrations are high (i.e. May, 1986) and benthic macrofaunal communities are growing rapidly, there are multiple routes for deposited N to be transformed. For example, N compounds can be incorporated into benthic macrofaunal biomass; a portion can be buried in the accreting sediment column and a portion can be nitrified and then denitrified. All of these pathways are very probably operative in the early spring and fall periods and would result in a smaller portion of deposited N being returned from sediments to the water column as NH_A^+ .

Phosphorus recycling appears to be strongly influenced at this deepwater site by redox conditions. During the portions of the year when O_2 levels are high, little of the deposited P is returned to the water column. However, when O_2 levels become depressed (and sediments become anoxic) we have observed very large fluxes of P from sediments to the water column, probably as a result of the much higher solubility of reduced Fe-P compounds. Whatever the mechanism, large amounts of P are released from these sediments during the low O_2 periods of the summer.

Finally, there appears to be a strong seasonal pattern in the proportion of nutrients supplied from the sediments for use in phytoplanktonic production. In short, when nutrient supplies in the water column are generally high (i.e. following the spring freshet) the proportion supplied via sediment recycling is low. During other portion of the year the calculated percentage is substantial at this deep station, ranging up to 38% for N and 200% for P. Similar percentages have been recorded for other Chesapeake Bay sites (Boynton and Kemp, 1985) and indicate the importance and seasonal nature of sediment processes on water quality conditions of overlying waters.

References

- Aspila, I., H. Agemian and A.S.Y. Chau. 1976. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101:187-197.
- Boynton, W. R., W. M. Kemp, and C. G. Osborne. 1980. Nutrient fluxes across the sediment-water interface in the turbid zone of a coastal plain estuary. In: V. S. Kennedy [ed.], Estuarine Perspectives. Academic Press, New York. pp. 93-109.
- Boynton, W. R., W. M. Kemp, and C. W. Keefe. 1982. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production. In: V. Kennedy [ed.], Estuarine Comparisons. Academic Press, New York. pp. 69-90.
- Boynton, W. R., W. M. Kemp, C. G. Osborne, E. Spalding, C. W. Keefe, and K. V. Wood. 1982. Estuarine community dynamics in relation to power plant operations. Benthic Processes Program. Draft Final Report. Univ. of Md. CEES. CBL. Solomons, Maryland.
- Boynton, W.R., W.M. Kemp, et al. 1984. Ecosystems Processes Component Study Plan. UMCEES-CBL Ref. No. 85-16.
- Boynton, W.R., W.M. Kemp, L. Lubbers, K.V. Wood and C.W. Keefe. 1985. Ecosystems Processes Component. Pilot Study, June-July 1984. Ref. No. [UMCEES]CBL 85-3.
- Boynton, W. R., and W. M. Kemp. 1985. Nutrient regeneration and oxygen consumption by sediments along an esuarine salinity gradient. Mar. Ecol. Prog. Ser. 23:45-55.
- Callender, E., and D. E. Hammond. 1982. Nutrient exchange across the sediment-water interface in the Potomac River Estuary. Estuarine Coastal Shelf Sci. 15:395-413.
- Chervin, M.B., T.C. Malone and P.J. Neale. 1981. Interactions between suspended organic matter and copepod grazing in the plume of the Hudson River. Estuar. Coast. Mat. Sci. 13:169-184.
- Cory, R. L. 1974. Changes in oxygen and primary production of the Patuxent estuary, Maryland, 1963 through 1969. Ches. Sci. 15:78-83.
- Davies, J.M. and R. Payne. 1984. Supply of organic matter to the sediment in the northern North Sea during a spring phytoplankton bloom. Mar. Biol. 78:315-324.
- D'Elia, C. F., P. A. Steudler, and N. Corwin. 1977. Determination of total nitrogen in aqueous samples using persulfate digestion. Limnol. Oceanogr. 22:760-764.

- D'Elia, C. F., D. M. Nelson, and W. R. Boynton. 1983. Chesapeake Bay nutrient and plankton dynamics: III. The annual cycle of dissolved silicon. Geochim. Cosmochim. Acta 47:1945-1955.
- Dugdale, R. C., and J. J. Goering. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12:196-206.
- Environmental Protection Agency (EPA). 1979. Methods for Chemical Analysis of Water and Wastes. USEPA-6000/4-79-020. Environmental Monitoring and Support Laboratory, Cincinnati.
- Flemer, D. A. 1970. Primary production in the Chesapeake Bay. Ches. Sci. 11:117-129.
- Hargrave, B.T. 1969. Similarity of oxygen uptake by benthic communities. Limnol. Oceanogr. 14:801-805.
- Hargrave, B.T. and S. Taguchi. 1978. Origin of deposited material sedimented in a marine bay. J. Fish. Res. Board Can. 35:1604-1613.
- Kemp, W.M. and Boynton. 1980. Influence of biological and physical factors on dissolved oxygen dynamics in an estuarine system: implications for measurement of community metabolism. Estuarine Coastal Mar. Sci. 11:407-431.
- Kemp, W.M., and W.R. Boynton. 1981. External and internal factors regulating metabolic rates of an estuarine benthic community. Oecologia 51, 19-27.
- Kemp, W. M., and W. R. Boynton. 1984. Spatial and temporal coupling of nutrient inputs to estuarine primary production: the role of particulate transport and decomposition. Bull. Mar. Sci. 35:522-535.
- Klump, J. V., and C. S. Martens. 1981. Biogeochemical cycling in an organic rich coastal marine basin-II. Nutrient sediment-water exchange processes. Geochim. Cosmichim. Acta 45:101-121.
- Krom, M. D., and R. A. Berner. 1980. The diffusion coefficients of sulfate, ammonium, and phosphate ions in anoxic marine sediments. Limnol. Oceanogr. 25:327-337.
- Lund, J. W. G., C. Kipling, and E. D. Le Cren. 1958. The inverted microscope method of estimating algal numbers and statistical basis of estimations by counting. Hydrobiologia 11:143-170.
- Malone, T.C., W.M. Kemp, H.W. Ducklow, W.R. Boynton, J.H. Tuttle, and R.B. Jonas. 1986. Lateral variation in the production and fate of phytoplankton in a partially stratified estuary. Mar. Ecol. Prog. Ser. 32:149-160.

- Nixon, S. W. 1981. Remineralization and nutrient cycling in coastal marine ecosystems. In: B. J. Neilson and L. E. Cronin [eds.], Estuaries and Nutrients. Humana Press. Clifton, New Jersey. pp. 111-138.
- Nixon, S.W., C.A. Oviatt, and S.S. Hale. (1976). Nitrogen regeneration and the metabolism of coastal marine bottom communities. In: J.M. Anderson and A. Macfadyen [eds.], The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. Blackwell Scientifc Publications, London. pp. 269-283. (N; REGENERATION; METABOLISM; COASTAL MARINE BOTTOM COMMUNITIES).
- Nixon, S. W., J. R. Kelly, B. N. Furnas, C. A. Oviatt, and S. S. Hale. 1980. Phosphorus regeneration and the metabolism of coastal marine bottom communities. In: K. Tenore and B. Coull [eds.], Marine Benthic Dynamics. University of South Carolina Press. Columbia, South Carolina. pp. 219-242.
- Nixon, S.W. and M.G. Pilson. 1983. Nitrogen in estuarine and coastal marine ecosystems. In: Carpenter, E.J. and D.G. Capone [eds.]. Nitrogen in the Marine Environment. Academic Press, N.Y., p. 565-648.
- Officer, C. B., D. R. Lynch, W. M. Kemp, and W. R. Boynton. 1985. Estimation of benthic respiration parameters from field data. Estuarine Coastal Shelf Sci. 21:357-364.
- Paasche, E. 1973. The influence of cell size on growth rate, silica content, and some other properties of four marine diatom species. Norw. J. Bot. 20:197-204.
- Pamatmat, M.M. 1977. Benthic community metabolism: a review and assessment of present status and outlook, pp. 89-111. In: B.C. Coull [ed.] Ecology of Marine Benthos. Univ. S. Carolina Press, Columbia.
- Peinert, R., A. Saure, P. Stegmann, C. Stienen, H. Haardt and V. Smetacek. 1982. Dynamics of primary production and sedimentation in a coastal ecosystem. Neth. J. Sea Res. 16:276-289.
- Redfield, A. C. 1934. On the proportions of organic derivatives in seawater and their relation to the composition of the plankton. In: James Johnstone Memorial Volume. Liverpool Univ. Press, Liverpool. pp. 176-192.
- Redfield A. C., B. H. Ketchum, and F. A. Richards. 1963. The influence of organisms on the composition of seawater. In: M. N. Hill [ed.], The Sea. John Wiley and Sons, New York. Vol. 2. pp. 26-77.
- Shoaf, W. T., and B. W. Lium. 1976. Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Limnol. Oceanogr. 21:926-928.

Skjoldal, H.R. and C. Lannergren. 1978. The spring phytoplankton bloom in Lindaspollene, a land-locked Norwegian fjord. II. Biomass and activity of net and nanoplankton. Mar. Biol. 47:313-323.

Smetacek V., K von Brockel, B. Zeitzschel and W. Zenk. 1978. Sedimentation of particulate matter during a phytoplankton spring bloom in relation to the hydrographical regime. Mar. Biol. 47:211-226.

Smetacek, V. and P. Hendrikson. 1979. Composition of particulate organic matter in Kiel Bight in relation to phytoplankton succession. Oceanol. Acta 2(3): 287-298.

Strickland, J. D. H., and T. R. Parsons. 1972. A Practical Handbook of Seawater Analysis. Bull. Fish. Res. Board Can. No. 67. Second Edition. 310 pp.

Technicon Industrial Systems. 1977. Silicates in water and seawater. Industrial Method No. 186-72W/B. Technicon Industrial Systems, Terrytown, NY.

Tuttle, J. et al. 1986. Completion report to EPA relative to anomia in the middle portions of Chesapeake Bay. Ches. Biol. Lab. Solomons, Md.

Venrick, E. L. 1978. How many cells to count? In: A. Sournia [ed.], Phytoplankton Manual. UNESCO, Paris. pp. 167-180.

United States Geological Survey. 1978-1985. Water Resources Data for Maryland and Virginia. U.S. Dept. Interior, Washington, D.C.

Listing of Appendix Tables

- 1. Vertical water column profiles of temperature, salinity and dissolved oxygen at SONE stations.
- 2. Surface and bottom water dissolved and particulate nutrient concentrations at SONE stations.
- 3. Vertical profiles of selected sediment variables.
- 4. Nutrient and dissolved oxygen concentrations in the sediment-water microcosms at SONE stations.
- 5. Summary of sediment-water nutrient and dissolved oxygen fluxes at SONE stations.
- 6. Vertical water column profiles of temperature, salinity, dissolved oxygen and particulate materials at VFX stations.
- 7. Description of the composition of surficial sediments at VFX stations.
- 8. Estimated deposition rates of particulate materials to the surface, middle and near-bottom collecting cups at VFX stations.

Appendix Table 1

BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2OPROF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

			TOTAL	SAMPLE	TEND	CAL THITTY	
LOCATION	DATE	TIME	DEPTH (m)		(oC)	(ppt)	(mg/l)
SONE 1							
ST.LED	27-AUG-84	940	6.7	0.5	25.3	9.8	7.8
				2	25.4	10.5	7.3
				4	25.3	10.8	5.9
				6	24.7	13.3	2.2
~RIL VISTA	27-AII6-R4	1335	3.6	0.5	25.8	8.8	7.5
20112011	27 1100 01	1000		2	25.9	8.9	7.2
				3	25.8	8.9	7.0
HORN. PT	29-AUG-84	1025	7.2	0.5	25.2	11.2	6.3
				2	25.1	11.5	5.6
				4	24.8	12.0	4.4
				6	24.7	12.6	3.6
				6.7	24.7	12.6	3.4
WIND.HL	29-AUG-84	1255	3.6	0.5	25.6	4.8	6.5
				1	25.6	4.8	6.5
				2	25.2	4.9	6.2
				3	25.4	5.1	6.2
RAG.PT	28-AUG-84	1145	13.2	0.5	25.1	8.5	7.9
				2	24.6	8.5	7.5
				4	24.8	8.5	7.1
				6	24.5	3.6	6.5
				8	24.7	9.1	5.9
				10	24.4	9.4	5.2
				12	24.3	16.5	0.4
				13	24.1	17.0	0.3
ND.PT	28-AUG-84	1720	9.8	0.5	26.2	2.2	7.4
				2	25.9	2.2	7.4
				4	25.8	2.3	7.3
				6	26.0	2.2	7.2
				8	25.6	2.4	6.5
				9	25.7	2.4	6.2
PT.NO.PT	28-AUG-84	900	13	0.5	24.7	11.8	7.2
				2	25.0	11.E	7.1
				4	25.0	11.8	7.1
				6	25.0	11.8	7.1
				. 8	24.8	13.5	4.2
				10	24.9	16.5	i 1.5
				17	25 1	19 7	1 A A

BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2DPROF(Vertical profiles of temp.,salinity and oxygen conc. at SDNE stations)

STATION			TOTAL Depth	SAMPLE DEPTH	TEMP	SALINITY	DISS.DXY
LOCATION	DATE	TIME	(m)	(m)	(00)	(ppt)	(mg/l)
R-64	29-AUG-84	745	16	0.5	24.5	13.0	7.8
-				2	24.4	12.7	7.7
				4	24.5	12.9	7.6
				6	24.5	12.9	7.3
				8	24.5	13.0	7.0
				10	24.2	15.5	3.7
				12	23.9	17.6	1.4
				14	23.6	18.9	0.5
				16	23.5	19.8	0.4
TDM.PT	30-AUG-84	1010	15.2	0.5	24.3	12.4	6.8
				2	24.3	12.4	6.8
				4	24.4	12.5	6.3
				6	24.2	12.6	5.9
-				8	24.1	12.7	5.B
				10	24.1	12.7	5.7
				12	24.2	13.5	4.6
				14	23.2	16.5	3.3
				15.25	23.2	18.4	0.3
STIL.PD	30-AUG-84	730	9.5	0.5	24.7	1.5	7.2
				2	2 4 .B	1.2	6.7
•				4	24.6	1.7	6.7
				6	24.6	1.7	6.5
				8	24.9	2.3	6.4
				9	24.9	2.3	6.4

1-2

BIDMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2OPRDF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

			TOTAL	SAMPLE			
STATION			DEPTH	DEPTH	TEMP	SALINITY	DISS.DXY
LOCATION	DATE	TIME	(g)	(m)	(3o)	(ppt)	(mg/l)
SONE 2							
ST.LED	17-OCT-84	1300	7.0	1	18.5	13.0	9.6
				- 3	18.4	12.9	9.5
				5	18.4	13.8	7.9
				7	18.4	14.2	7.5
BU.VISTA	17-0CT-84	1000	4.0	1	18.4	11.9	6.2
rë.	٠			2	18.3	11.5	6.2
				3	18.4	11.2	6.2
HDRN.PT	15-0CT-84	1557	8.0	1	17.4	13.0	10.B
				3	17.5	12.8	9.1
				5	17.2	13.0	9,2
				7	17.1	13.5	9.0
WIND.HIL	15-DCT-84	1050	4.6	1	17.3	5.8	8.7
				3	17.0	8.5	8.7
				5	17.0	8.9	8.5
RAG. PT	18-0CT-84	0820	15.5	1	18.2	12.4	8.6
				3	18.2	13.3	7.4
				5	18.2	13.6	7.0
				7	18.3	14.5	6.1
				9	18.4	14.7	6.0
				11	18.4	15.4	6.0
				13	18.3	15.0	2. ب
				15	18.2	15.5	6.2
MD.PT	18-OCT-84	1233	9.5	1	19.1	4.1	8.0
				3	18.8	4.3	7.5
				5	18.7	4.6	7.4
				7	18.7	4.9	7.0
				9	18.7	6.0	6.5
PT.ND.PT	17-DCT-84	1650	13.4	1	18.3	15.3	10.6
				3	18.1	15.3	10.4
				5	18.3	16.2	9.2
				7	1B.3	16.1	8.9
				9	18.2	16.4	8.4
				11	18.0	17.2	7.4
				13	18.2	19.1	6.6

BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2OPRDF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

STATION LOCATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP (oC)	SALINITY (ppt)	DISS.DXY (mg/l)
R-64	16-DCT-84	1540	19.0	1	17.7	12.8	10.4
				3	17.8	14.8	9.3
				5	17.4	15.9	8.4
				7	17.3	16.1	8.3
				9	17.8	16.5	8.1
				11	18.0	17.3	6.9
				13	18.1	17.5	6.8
		·		15	18.3	18.7	5.4
				17	18.4	19.6	5.1
				19	18.7	18.4	4.7
R-78	16-DCT-84	1100	16.4	1	17.7	12.1	8.3
				3	17.8	13.3	8.2
				5	17.9	14.1	8.2
				7	17.9	14.7	7.7
				9	18.0	13.5	7.2
				11	18.3	16.6	5.6
				13	18.5	18.4	4.6
				15	18.6	18.8	4.2
				16	18.8	18.9	4.0
STIL.PD	16-DCT-84	0750	10.0	1	16.9	4.7	9.6
				3	16.9	5.4	9.1
				5	16.9	6.8	8.9
				7	17.1	7.2	8.1
				ç	17 1	24	7 Å

BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2OPROF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

074710M			TOTAL	SAMPLE	TEND	PAI THITTH	
LOCATION	DATE	TIME	verin (m)	UEFIN (m)	(oC)	(ppt)	(mg/l)
SONE 3 STIED	4-MAV-85	0740	6.6	1	18.0	10.5	7 450
STILLO	0 1111 00	V/ 4V	010	* 7	18.0	10.5	7 30
				5	18.0	11.5	6.63
				5 7	17.0	11.4	6.45
BU VICTA	A-MAV-85	1150	4.0	05	21.5	7 9	9 10
20111010	• IIII • •		110	2	20.0	8.0	7 80
				4	19.8	1.0	7.95
HORN.PT	7-MAY-85	900	9.5	0.5	17.5	10.4	8.
				2	17.5	10.4	В.
				4	17.5	10.4	8.
				6	17.5	11.8	8.
				7	17.5	11.8	8.
WIND.HIL	7-HAY-85	705	4.2	5	19.5	6.2	7.
				1	19.1	6.4	7.
				3	18.9	5.9	7.
RAG.PT	9-MAY-85	640	17.0	0.5	4.3	11.0	10.0
				2	17.4	11.0	10.0
				4	16.8	12.0	7.6
				6	16.8	12.1	7.3
				8	15.8	14.8	3.2
				10	15.4	15.0	3.0
				12	15.5	15.3	3.2
				14	15.6	15.4	3.4
				15.5	15.6	15.4	3.3
MD.PT	9-MAY-85	1025	10.B	0.5	19.5	3.1	7.7
				2	19.5	3.2	7.2
				4	19.3	3.8	7.0
				6	19.3	3.8	7.0
				8.5	19.4	4.0	6.8
PT.NO.PT	8-MAY-85	1630	14,5	0.5	18.6	13.0	9.6
				2	17.2	12.9	9.3
	,			4	17.0	12.8	9.0
				6	16.B	12.8	9.0
•				8	16.8	15.4	9.0
				10	16.6	13.8	B.2
				17 5	10.6	13.3	1.5
				12.2	13.8	14.0	5.9

1-5

BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2OPROF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

R-64 6-MAY-85 1720 16.8 1 17.0 9.6 3 17.0 9.5 6 15.6 10.5 9 15.0 11.5	9.8 9.8
3 17.0 9.5 6 15.6 10.5 9 15.0 11.5	9.8 9.8
6 15.6 10.5 9 15.0 11.5	99.
9 15.0 11.5	0.0
	6.9
12 14.3 12.5	6.3
15 13.8 13.0	5.3
R-78 7-MAY-85 1655 17.0 0.5 16.4 9.2	12.60
2 16.4 9.2	12.20
4 16.4 9.2	12.25
6 16.4 9.2	11.10
8 16.0 9.8	10.65
10 15.B 11.4	8.40
12 14.0 11.5	6.70
14 13.B 11.9	5.70
16 13.8 12.6	5.23
STIL.Pd 8-MAY-85 705 9.5 0.5 17.5 0.8	8.60
2 17.5 0.3	8.49
4 17.6 0.3	8.49
6 17.6 0.2	8.45
8 17.7 0.3	8,42
9 17.8 0.7	0.00

BIDMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2OPROF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

STATION			TOTAL Depth	SAMPLE DEPTH	TEMP	SALINITY	DISS.DXY
LOCATION	DATE	TIME	(m)	(m)	(Jo)	(ppt)	(mg/l)
SDNE 4							
ST.LED	25-JUNE-85	1100	7.5	0.5	24.8	12.8	6.12
				2	24.7	13.0	6.05
				4	24.6	13.0	5.80
				6	24.5	13.2	4.12
BU. VISTA	25-JUNE-85	730	4.6	0.5	25.5	11.2	5.5
*				2	25.7	11.4	4.9
				3	25.7	11.0	4.5
HORN PT.	26-JUNE-85	700	8.2	0.5	24.5	5.8	6.15
				2	24.6	5.9	6.20
				4	24.6	5.9	6.15
				6	24.8	6.0	5.85
				7	24.8	6.0	5.68
RAS PT	24-JUNE-85	9 20	16.5	0.5	24.2	11.5	7.4
				2	24.2	11.5	7.2
				4	24.1	11.7	7.2
				6	23.2	14.1	2.2
				8	23.1	14.3	0.4
				10	22.9	16.2	0.4
				12	22.3	16.2	0.3
				14	22.3	16.2	0.3
				15	22.3	16.2	
MD PT	24-JUNE-85	1320	9.6	0.5	25.9	4.2	6.8
				2	25.8	4.8	7.2
				4	25.3	5.5	5.3
				6	24.8	6.2	4.8
				8	24.7	6.2	4.7
PT.ND.PT	24-JUNE-85	1830	14.4	0.5	25.2	14.8	8.7
				2	25.2	14.B	8.7
				4	24.1	14.5	8.4
				6	24.0	14.8	7.6
				8	24.0	14.8	7.4
				10	23.3	15.2	5.0
				12	22.7	16.1	1.8
				13	22.6	16.1	1.B

1-7

BIDMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2OPROF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

STATION LOCATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP (oC)	SALINITY (ppt)	DISS.OXY (mg/l)
R-64	25-JUNE-B5	1540	17.5	0.5	25.7	13.8	 9.85
				2	24.3	13.0	9.60
				4	24.0	13.2	8.60
				6	23.9	13.2	8.35
				8	23.8	13.2	8.12
				10	23.5	13.3	6.50
				12	22.4	14.0	3.05
				14	21.7	14.8	1.10
				16	21.6	15.5	0.55
R-78	27-JUNE-85	1045	16.8	0.5	22.5	10.8	7.50
				2	22.5	10.6	7.42
				4	22.6	10.9	7.20
				6	22.5	11.1	6.52
				8	22.4	12.5	4.72
				10	22.3	14.0	2.38
				12	21.8	14.5	1.90
				14	21.6	14.7	1.58
				15	21.5		0.92
STIL.PD	26-JUNE-85	1710	10.4	0.5	23.7	1.7	7.02
				2	23.7	1.7	7.05
				4	23.7	1.7	6.95
				6	23.7	2.2	6.82
				8	23.6	3.6	6.10
				9	23.6	3.5	5.99

BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2OPROF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

STATION LOCATION	DATE	TIKE	TOTAL DEPTH (#)	SAMPLE Depth (m)	TEMP (oC)	CONDUCTIVITY (umho)	DISS.DXY (mg/l)
SONE 5						****	
ST.LED	22-AUG-85	743	7.9	0.5	25.6	246	5.28
				2	25.7	245	5.28
				4	25.8	246	5.21
				6	26.2	253	4.40
				7	26.3	254	4.36
BU.VISTA	22-AU6-B5	940	5.8	0.5	25.7	220	4.23
				2	25.9	219	4.03
				4	26.0	229	3.13
				4.5	26.1	230	3.02
норм рт	21-416-85	1150	8.2	۵ 5	26 A	230	5 85
menn Li	11 NOU UU	1100	0,2	v.u 2	26.7	230	5,03
				4	76.7	23V 777	5 45
				4	20.2	202 777	5 15
				7	26.3	246	4.47
RAG PT	19-AUG-85	901	16.5	0.5	26.0	249	5.0
				2	26.0	249	5.0
				4	26.1	249	4.9
				6	26.1	250	4.9
				8	26.1	250	4,8
				10	26.1	251	4.5
				12	26.0	251	4.3
				14	26.0	255	3.5
				15	26.0	257	3.1
ND PT	19-406-85	1300	8.8	0.5	26. B	126	4.76
			5.5	2	26.7	128	4.54
				- 4	26.7	129	4.51
				6	26.7	128	4.51
				B	26.7	129	4.51
PT NO PT	20-AUG-85	700	14.3	0.5	26.0	277	6.83
				2	26.2	277	6.86
				4	26.2	277	6.B2
				6	26:3	277	6.67
				В	26.3	279	6.25
				10	26.2	287	5.05
				12	26.1	309	3.40
				13	26.1	320	2.28

1-9

BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2DPROF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

STATION LOCATION	DATE	TIME	TDTAL DEPTH (m)	SAMPLE DEPTH (m)	TEHP (oC)	CONDUCTIVITY (usho)	DISS.OXY (mg/l)
R-64	20-AUG-85	1020	16.5	0.5	26.2	253	6.74
				2	26.2	253	6.70
				4	26.2	254	6.54
				6	26.1	256	6.01
				B	26.1	265	5.25
				10	26.0	288	2.47
				12	25.9	335	1.12
				14	25.7	369	0.86
				15	25.6	370	0.84
R-78	20-aug-85	1345	15.5	0.5	26.5	226	7.4
				2	26.4	230	7.1
				4	26.3	236	5.4
				6	26.2	249	4.1
				8	26.1	256	3.4
				10	26.0	281	1.6
				12	25.7	322	0.4
				14	25.7	340	0.3
STIL PD	21-AUG-85	650	10.4	0.5	25.9	82	5.9
				2	26.0	82	5.8
				4	26.1	85	5.8
				6	26.2	102	5.4
				8	25.2	109	5.1
				9	26.2	115	4.7

BIDMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2DPRDF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

	STATION LOCATION	DATE	TIME	TOTAL DEPTH (=)	SAMPLE DEPTH (B)	TENP (oC)	SALINITY (umho)	DISS.OXY (mg/l)
	SONE 6	n die die die ein die Gestie die die die				Per unit per der lan der d		
	ST.LED	16-0CT-85	1730	7.3	0.5	20.7	16.3	8.74
					2	20.7	16.4	8.62
					. 4	20.4	17.0	7.17
					6	20.4	17.0	7.01
5.54 (,	- BU.VISTA	16-DCT-85	1530	6.0	0.5	21.B	12.9	8.7
					2	21.5	13.1	7.7
					4	21.5	13.3	8.2
					5	21.6	13.3	8.2
	HORN PT	15-OCT-85	1310	B. 2	0.5	20.1	14.8	9.75
					2	19.9	14.8	9.65
					. 4	19.9	14.8	9.52
					6	19.7	14.8	9.36
					7	19.4	15.3	B.41
	WIND HILL	15-0CT-85	1545	3.6	0.5	20.6	7.5	7.54
					2	20.4	7.5	7.29
					2.5	20.4	7.5	7.24
	RAS PT	17-007-85	830	16.2	0.5	19.7	16.2	8-16
					2	19.R	16.2	R 18
					· ·	19.8	16.2	R 14
					6	20.2	18.2	1 95
					8	20.2	18.3	5.02
					10	20.2	18.3	5 18
					17	20.2	18 3	5 20
					14	20.7	18 3	5 21
					15	20.2	18.3	5.20
	MD PT	17-DCT-85	1250	10.0	0.5	20.0	7.9	7.87
					2	20.0	7.9	7.86
					4	20.0	8.0	7.99
					6	20.0	8.0	8.06
	•				8	20.0	B.1	8.08
						•		
	PT.ND.PT	14-DCT-85	745	14.1	0.5	20.0	18.2	10.80
					2	20.0	18.2	10.12
					4	20.0	18.4	10.06
					6	20.1	18.9	9.57
					8	20.0	18.9	9.27
					10	19.9	19.2	8.25
					12	20.3	19.9	5.96
					13	20.4	19.9	5.76

BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2DPRDF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

STATION LOCATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (=)	TEMP (oC)	SALINITY (umho)	DISS.DXY (mg/l)
R-64	14-DCT-B5	1150	16.B	0.5	19.8	16.8	9.90
				2	19.6	16.8	9.87
				4	19.6	17.4	9.77
				6	19.6	17.5	9.20
				8	19.5	17.B	8.66
				10	20.0	19.0	6.46
				12	20.9	20.B	4.32
		• •		14	21.0	21.0	4.15
				15	21.1	21.2	3.96
R-78	14-DCT-85	1515	15.0	0.5	19.4	13.8	10.26
				2	19.7	14.5	9.95
				4	19.4	15.1	8.0B
				6	19.7	15.8	6.58
				8	20.1	17.0	5.18
				10	20.2	17.3	4.56
				12	20.4	17.8	4.20
				14	20.6	18.3	3.09
STILL PI) 15-DCT-85	730	10.6	0.5	18.3	5.2	7.5
81166 IN				2	18.3	5.6	7.3
				4	18.4	6.1	7.2
				6	18.4	6.9	7.0
				8	18.5	7.1	ć.9
				9	18.5	7.1	6.9

BIDMDNITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT(SDNE) H2OPROF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

STATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP (oc)	SALINITY (PPT)	DISS.OXY {mg/l}
SONE 7							
ST.LED	8-MAY-86	700	7.0	0.5	18.2	10.9	9.9
				2.2	17.5	10.9	9.6
				4.2	14.8	12.1	7.9
				6.3	14.4	12.3	7.5
BU.VISTA	8-MAY-86	1200	5.2	0.5	19.53	8.6	9.01
				2	19.36	8.6	8.80
				4	19.23	8.7	8.74
				4.7	19.05	8.8	8.62
HDRN PT	3-MAY-B6	1045	7.5	0.5	14.53	10.4	9.8
				2.2	14.51	10.4	9.7
				4	14.47	10.4	9.6
				6	14.42	10.5	9.5
				7.4	14.35	10.5	9.3
WINDY HILL	3-MAY-86	1809	2.8	0.5	16.28	3.4	9.9
				1.1	16.17	3.5	9.9
				2.2	16.13	3.6	9,8
				2.6	16.12	3.7	9.7
RAB PT	6-MAY-86	950	16.5	0.5	15.07	8.7	13.0
				2	14.95	B.7	12.7
				4.2	14.64	9.7	11.3
				6	13.46	12.3	8.0
				8	13.39	12.8	7.8
				9.B	13.28	12.8	7.6
				12.1	13.16	13.0	7.2
				14	13.03	13.2	6.9
				16	12.83	13.3	5.8
							.
רי עוד	/-841-86	4V0	10.0	0.5	16.30	5.5	1.6/
					15.1/	3.4	/.56
				4.2	16.16	3.7	7.58
				6.6	16.02	4.4	1.74
				8.2	15.93	4.6	7.61
				9.8	15.74	4.8	7.44
PT NO PT.	5-MAY-86	1450	14.4	0.5	14.91	12.4	9.2
				2	14.68	12.5	9.2
				4	13.66	12.7	9.3
				6.1	13.28	12.9	9.3
				8.1	13.09	13.6	9.1
				10.2	13.20	14.4	9.0
				12.3	13.07	14.4	8.9
				13.3	13.09	14.9	8.2

BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT(SONE) H2DPROF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

STATION LOCATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP (oC)	SALINITY (PPT)	DISS.OXY (mg/l)
R-64	5-MAY-86	950	16.5	0.5	13.84	10.4	10.2
				2	13.64	10.4	10.2
				4.1	13.40	10.5	10.1
				6.1	12.78	12.5	8.8
				8.2	12.67	13.4	B.3
				10	12.43	14.6	7.5
				12	12.39	14.6	7.3
		• •		14	11.98	16.5	5.7
				16.2	11.83	17.7	5.2
R-78	4-MAY-86	1030	16.0	0.5	12.22	8.7	9.7
				2.2	12.21	8.7	9.6
				3.9	12.14	8.8	9.3
				6.1	11.86	11.2	ó.7
				B	10.94	14.5	3.3
				10	10.68	16.6	2.5
				12	10.51	17.1	2.0
				13.9	10.45	17.4	1.8
				16	10.44	17.5	1.7
STIL PD	4-MAY-86	1400	9.8	0.5	14.B4	0.0	9.6
				2.1	14.92	0.0	9.6
				4	14.82	0.0	9.6
				6	14.70	0.0	9.5
				В	14.48	0.0	9.4
				8.5	14.38	2.0	9.1
BIDMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT (SONE) H2OPROF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

			TOTAL	SAMPLE	*****		
LOCATION	DATE	TIME	DEP1H (m)	UEPIH (m)	(oC)	(umho)	(mg/l)
SONE 8							
ST.LE0	26-JUNE-86	740	7.2	0.5	24.4	229	6.7
				2	24.5	228	6.7
				4	24.5	229	6.1
				5.5	24.5	230	5.9
BU.VISTA	26-JUNE-86	950	5.5	0.5	24.9	190	7.8
				2	24.9	192	7.0
				4	24.9	203	5.4
HORN PT	25-JUNE-86	1350	8.0	0.5	24.8	206	7.6
				2	24.9	206	7.3
				4	24,8	206	6.7
				6	24.B	206	6.5
				6.5	24.7	206	6.4
WIND HILL	25-JUNE-86	1500	2.8	0.5	25.6	117	5.7
				1.5	25.7	117	5.5
RAG PT	23-JUNE-86	936	16.5	0.5	23.7	223	8.0
				2	23.7	223	7.2
				4	23.7	225	7.0
				6	23.6	226	6.5
				8	23.5	226	6.3
				10	23.4	226	6.2
				12	23.4	228	5.9
				14	22.7	240	3.3
				16	22.6	242	3.0
ND PT	23-JUNE-86	1246	9.5	0.5	25.5	108	5.5
				2	25.3	110	5.1
				4	25.3	111	5.0
				6	25.2	111	4.9
				8	25.2	111	4.9
PT NO PT	24-JUNE-86	740	14.4	0.5	23.9	258	9.2
				2	23.9	258	9.1
				4	23.9	259	9.1
				6	23.9	261	8.7
				8	23.8	264	8.0
				10	23.5	273	6.6
				12	22.9	291	3.2
				13.5	22.6	304	2.5

BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE COMPONENT (SONE) H2OPROF(Vertical profiles of temp.,salinity and oxygen conc. at SONE stations)

ł

STATION LOCATION	DATE	TIME	TOTAL DEPTH (#)	SAMPLE DEPTH (m)	TEMP (oC)	CDNDUCTIVITY (unho)	DISS.DXY (mg/l)
R-64	24-JUNE-86	1110	17.0	0.5	24.3	220	9.7
				2	24.3	220	9.3
				4.	24.2	222	9.0
				6	24.0	229	8.1
				8	23.3	244	6.1
				10	22.0	274	1.8
				12	21.2	288	0.6
				14	20.5	302	0.1
				15.5	20.4	303	0.0
R-78	24-JUNE-86	1808	17.4	0.5	24.7	153	9.4
				2	24.5	153	9.1
				4	24.4	156	8.5
				6	24.2	162	7.5
				8	22.9	195	4.4
				10	21.8	227	2.4
				12	21.5	231	2.0
				14	21.2	242	1.6
				15	21.0	245	1.3
STIL PD	25-JUNE-86	825	10.0	0.5	24.1	5	6.5
				2	24.2	5	6.3
				4	24.2	5	6.2
				6	24.3	6	6.2
				8	24.2	6	6.2

				B a U a c		DISSOLV	ED NUT	RIENTS				PARTIC	ULATE	5 5	
STATION	DATE	TIME	TOTAL Depth (m)	SAMPLE DEPTH (m)	NH4 (um n	ND3+ND2) (um N)	TDN (um N)	DIP (um P	TDP) (um P	SI(OH)4)(uM Si)	PC (ug/1)	PN (ug/1)	PP (ug/)	CHLDRO) (ug/1)	SESTON (mg/l)
SONE 1															
ST.LED	27-AUG-B4	940	6.7	0.5 6.0	1.9 10.9	0.12 0.38	27.4 35.5	0.33 0.69	0.38 0.07	72.8 63.5	2126 626	439 108	B0 31	14.8 3.20	21.6 19.4
BU.VISTA	27-AUG-84	1335	3.6	0.5 3.0	0.7 0.6	0.16 0.15	25.8 26.6	2.89 3.06	2.89 3.63	93.0 91.0	2463 2872	395 439	110 140	16.2 14.5	54.0 70.0
PT.ND.PT	28-AU6-84	900	13.0	0.5 12.0	0.7 20.5	0.06 0.13	21.6 38.9	0.15 1.10	0.14 0.57	46.8 47.6	1078 1182	194 196	33 35	4.8 0 2.5	13 [.] .9 33.2
RAG.PT	28-AUG-84	1145	13.2	0.5 13.0	0.3 19.3	0.39 0.75	21.6 46.8	0.83 2.42	0.75	62.1 57.6	1341 824	210 137	40 35	7.80 2.50	10.1 20.6
MD.PT	29-AU6-84	1720	9.8	0.5 9.0	0.6 1.8	36.3 35.0	62.4 59.7	1.70 2.28	1.85 1.92	32.8 38.8	3438 2607	564 435	70 72	21.8 16.1	22.0 31.8
R-64	29-AU6-84	745	16.0	0.5 16.0	3.0 25.2	0.92 0.18	28.4 44.9	0.09	0.07 0.89	50.0 48.2	947 1243	198 186	28 38	5.90 2.40	9.4 45.2
HORN. PT	29-AU6-84	1025	7.2	0.5 6.7	0.5 7.8	0.19 0.84	28.2 36.7	0.28 0.31	0.95 0.49	74.6 68.7	2108 938	409 179	70 38	20.3 4.20	21.0 28.4
WIND.HIL	27-AU6-84	1255	3.6	0.5 3.0	0.4 0.5	0.15 0.20	29.3 27.6	1.00 1.23	1.67 1.76	37.5 39.6	3313 13847	470 1601	85 375	18.4 23.4	37.2 272.0
STIL.PD	30-AUG-B4	730	9.5	0.5 9.0	5.2 5.9	48.5 47.5	83.0 71.0	0.20 0.30	1.42 0.44	47.9 42.6	959 1189	136 162	32 38	6.25 6.40	16.0 21.8
TOM.PT	30-AU6-84	1010	15.2	0.5 15.2	5.6 15.8	6.32 5.58	36.2 54.0	0.16	0.85 0.48	47.1	1287 565	247 110	50 28	10.2	17.2

BIOMONITIORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SDNE) H2ONUTS (Surface and bottom water dissolved and particulate nutrient concentrations at SONE stations) BIDMONITIORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) H2ONUTS (Surface and bottom water dissolved and particulate nutrient concentrations at SONE stations)

			70741			DISSOLV	ED NUTI	RIENTS				PARTICUL	TES		
STATION	DATE	TIME	DEPTH (e)	DEPTH (a)	NH4 (uM N	ND3+ND2) (um n)	TDN (um m)	DIP (um P	TDP) (um P)	SI(OH)4)(um Si)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORO) (ug/1)	SESTON (mg/l)
SONE 2												-			
ST.LED	17-OCT-84	1300	7.0	1.0 6.5	3.0 6.7	1.69 3.72	24.7 34.2	0.27 0.47	0.27 0.94	32.7 24.3	958 915	190 146	25 33	6.8 2.7	12.9 40.2
BU.VISTA	17-0CT-84	1000	4.0	1.0	8.4	2.97	29.3	1.41	1.46	47.3	703	154	31	3.1	20.3
				3.0	8.5	2.87	31.4	1.38	1.48	47.2	686	141	39	2.0	29.8
HORN PT.	15-0CT-84	1557	8.0	1.0	2.9	0.17	24.9	0.21	0.39	22.8	1397	222	37	8.0	36.8
			•	8.0	1.4	2.10	21.B	0.02	0.02	23.9	902	153	29	5.4	35.0
WIND.HIL	15-DCT-84	1050	4.6	1.0	5.5	6.66	30.9	0.85	2.64	32.3	1958	332	63	7.1	35.8
				4.5	1.8	5.94	26.5	0.94	1.52	38.7	2060	282	48	5.8	43.4
RAG.PT	18-0CT-84	820	15.5	1.0	1.7	1.90	23.2	0.21	0.15	31.3	830	176	27	4.2	12.0
				15.0	8.9	2.18	30.0	0.25	0.40	12.9	604	105	24	1.9	20.4
MD.PT	18-0CT-84	1233	9.5	1.0	6.9	36.9	62.6	1.06	2.45	23.4	B24	136	36	3.4	11.4
•				9.0	8.7	29.8	52.2	1.09	2.51	36.2	1901	252	67	3.0	65.0
PT.ND.PT	17-0CT-84	1650	13.4	1.0	1.6	4.52	26.0	0.17	0.12	2.5	1026	161	20	9.8	16.2
				43.2	8.2	1.3/	27.5	0.2/	0.22	12.7	525	P.5	19	2.9	24.0
R-64	17-0CT-84	1540	19.0	1.0	2.9	11.70	32.4	0.20	0.42	21.5	1271	212	27	9.9	15.3
				19.0	12.0	2.99	32.0	U.4V	0.24	19.0	627	101	21	3.8	28.1
R-78	16-DCT-84	1100	16.4	1.0	6.1	8.04	38.4	0.16	0.52	25.1	812	172	28	6.9	13.0
				13.8	14.3	2.02	20.0	V.41	1.22	24.3	281	78	28	2.0	٥/.(
STIL.PD	16-0CT-84	750	10.0	1.0	0.3	42.3	58.5	0.18	0.18	18.8	931	180	29	7.8	9.4

.

BIOMONITIORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SDNE) H2ONUTS (Surface and bottom water dissolved and particulate nutrient concentrations at SDNE stations)

			TOTAL			DISSOLV	ED NUTI	RIENTS				PARTICULI	ATES		
STATION	DATE	TIME	DEPTH (m)	DEPTH (a)	NH4 (um n)	N03+N02) (UM N)	TDN (um n)	DIP (um P)	TDP (um P)	SI(OH)4 (um Si)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORO (ug/1)	SESTON (mg/1)
CONC 7	1. 1. 1. (1)														
SUME S	A-NAY-85	0740	h. h	0.5	1.4	0.7	27.0	0.20	1.28	7. B	991	255	17	R. 90	12.3
91:LL U	. 0 1111 00	VIIV	0.0	6.5	4.3	6.6	35.5	0.17	1.29	8.0	809	163	17	6.30	10.9
BU.VISTA	6-MAY-85	1150	4.0	0.5	1.1	6.3	29.2	1.20	2.08	34.6	3135	682	74	41.5	34.8
				4.0	0.6	2.4	26.5	0.86	1.86	29.9	2549	398	76	28.7	45.5
HORN PT.	7-MAY-85	920	7.5	0.5	2.6	6.2	29.3	0.11	1.16	3.3	860	257	14	7.90	11.4
				7.0	2.5	6.0	33.0	0.10	0.40	3.0	734	124	12	8.15	8.6
WIND.HIL	7-MAY-85	705	4.2	0.5	1.4	26.2	50.7	0.59	2.63	9.0	3305	439	86	21.9	70.(
				3.0	1.1	24.5	46.5	0.58	2.45	9.4	3714	490	74	25.0	73.0
RAG.PT.	9-MAY-85	640	17.0	0.5	0.5	2.4	27.8	0.12	1.22	7.9	2207	277	23	16.4	12.0
				15.5	8.0	5.5	35.4	0.12	0.43	10.3	1194	205	19	14.7	11.4
ND.PT.	9-MAY-85	1025	10.8	0.5	4.2	50.3	80.3	0.73	2.32	29.5	1964	458	56	28.2	28.0
				8.5	7.0	42.9	68.6	0.73	2.93	29.1	2991	485	130	22.8	85.5
PT.NO PT.	8-MAY-85	1630	14.5	0.3	2.7	13.5	41.9	0.07	1.52	2.2	583 -	155	10	4.90	10.4
				13.5	6.3	7.8	34.7	0.09	0.79	8.1	613	221	11	9.90	8.4
R-64	6-MAY-85	1720	16.8	0.5	2.0	21.5	45.6	0.11	0.45	1.3	984	158	11	9.80	7.4
				15.0	5.2	9.7	34.3	0.10	0.14	4,7	10 9 7	227	18	16.1	19.4
R-78	7-MAY-85	1655	17.0	0.5	0.7	20.3	42.9	0.20	0.16	1.3	2667	362	21	35.4	12.8
				16.0	4.7	14.2	41.3	0.15	0.68	3.1	4324	643	44	68.3	31.6
STIL. PD	8-MAY-85	705	9.5	0.5	4.0	57.7	79.5	0.17	1.81	7.1	1639	222	44	17.7	27 . 8
				9.0	4.B	57.3	79.4	0.16	1.6	7.8	2640	299	64	18.9	45.8

2

•

. ____

_

BIOMONITIORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SDNE) H20NUTS (Surface and bottom water dissolved and particulate nutrient concentrations at SDNE stations)

			-			DISSOLV	ED NUTI	RIENTS				PARTICULI	ATES		
STATION	DATE	TINE	DEPTH (m)		NH4 (uM N	ND3+ND2) (um n)	TDN (um n)	DIP (um P)	TDP (um P)	SI(OH)4)(uM Si)	PC (ug/1)	PN (ug/])	PP (ug/1)	CHLORO (ug/1)	SESTON (mg/l)
SONE 4															p
ST.LED	25-JUNE-85	1100	7.5	0.5 7.5	5.0 8.5	1.16 1.82	27.7 32.3	0.12 0.13	0.66 0.33	67.9 59.2	150B 1125	281 199	37 34	12.0 6.4	27.4 29.2
BU.VISTA	25-JUNE-85	730	4.6	0.5	0.6	0.69	26.3	1.36	2.08	91.0	3344	672	75	33.6	45.6
				3.0	0.8	0.62	28.9	1.41	2.03	91.0	2214	344	68	13.6	34.4
HORN PT.	26-JUNE-85	700	8.2	0.5	1.8	1.01	27.4	0.20	1.04	55.3	1144	198	28	8.0	30.2
	•			7.0	.2.9	1.55	34.3	0.27	0.89	54.3	2633	513	55	6.8	31.8
RAG.PT.	24-JUNE-85	920	16.5	0.5	3.1	0.19	38.4	0.20	0.74	41.9	1841	378	49	19.0	19.0
				15.0	18.B	0.36	42.7	1.56	2.34	42.4	1007	155	18	4.4	24.8
MD.PT	24-JUNE-B5	1320	9.6	0.5	1.4	38.1	63.4	1.10	1.96	33.3	1239	212	40	11.6	25.8
				8.0	4.6	30.9	57.5	1.27	1.84	40.9	1244	202	48	9.0	23.8
PT.NO.PT	24-JUNE-85	1830	14.4	0.5	0.5	0.37	24.1	0.14	0.96	11.8	998	142	17	4.0	13.2
				13.0	12.6	0.47	36.5	0.32	0.50	39.4	1066	216	24	3.2	12.6
R-64	25-JUNE-85	1540	17.5	0.5	0.3	0.68	21.B	0.27	0.88	28.6	2080	337	30	15.8	24.8
				16.0	22.1	0 85	46.2	0.40	ú.51	46.2	513	92	21	2.0	7.9
R-78	27-JUNE-85	1045	16.8	0.5	3.8	8.00	33.8	0.15	0.26	46.5	1690	318	43	1B.3	20.6
				15.0	22.9	0.90	52.6	0.43	0.74	47.8	692	128	27	4.0	10.8
ST1L.PD	26-JUNE-85	1710	10.4	0.5	3.6	43.6	67.0	0.44	1.09	31.6	1194	96	27	6.6	25.0
				9.0	4.5	38.6	63.5	0.49	0.94	38.5	1941	201	45	4.8	32.8

BIOMONITIORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SDNE) H2ONUTS (Surface and bottom water dissolved and particulate nutrient concentrations at SDNE stations)

,

	·		-			DISSOLV	ED NUTR	IENTS				PARTICUL	ATES			
STATION	DATE	TIME	DEPTH (a)	DEPTH	NH4 (uM)	ND3+ND2 (um)	NO2 (um)	TDN (uM)	DIP (uM)	TDP (uM)	SI(0H)4 (цМ)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORO (ug/1)	SESTDN (mg/l)
SONE 5																
ST.LED	22-AUG-B5	800	7.9	0.5 7.0	7.6 11.1	8.14 6.43	6.75 4.92	49.2 44.8	1.08 1.00	1.36 1.32	63.3 54.1	1130 787	167 144	20.8 21.4	9.64 5.93	16.6 23.6
BU.VISTA	22-AU6-85	1000	5.8	0.5 4.5	14.5 15.2	9.40 10.30	6.82 7.86	49.8 56.7	3.92 3.29	4.76 4.36	101.0 87.0	1593 1649	226 213	51 61	16.9 B.16	29.8 43.6
HORN PT.	21-AU6-85	1155	8.2	0.5 7.0	10.6 16.1	7.19 3.83	3.57 2.12	39.4 45.8	0.62 0.69	0.92 0.88	58.7 57.0	1667 1121	234 197	23.8 26.7	9.28 5.63	19.2 33.0
WIND.HIL	ND STATION	CHOP	RANK R	IVER BR	IDGE	NDT DPERI	ATING									
RAG.PT	19-aug-85	914 943	16.5	0.5 15.0	11.2 13.1	0.58 0.78	0.23 0.21	40.9 46.1	0.51 0.58	3.00 1.03	42.5 50.4	939 1579	192 291	21 32.8	7.24 7.12	10.7 25.7
MD.PT	19-AUG-85	1317 1340	8.8	0.5 8.0	7.7 6.8	6.55 6.48	3.29 3.36	39.8 39.2	2.04 2.26	1.78 2.70	71.6 62.2	2239 5114	323 525	4 7 171	29.5 17.0	31.0 142.5
PT.NO.PT	20-AUG-85	730 740	14.3	0.5 13.0	4.2 14.5	1.32 1.35	1.04 0.92	27.0 36.2	0.61 0.73	1.16 0.98	18.3 37.0	892 1599	186 255	20.1 29.9	6.59 3.10	8.8 45.7
R-64	20-AU6-85	1030 1045	16.5	0.5 15.0	2.2 21.3	2.88 2.31	2.60	32.6 43.2	0.24 1.14	1.16 1.40	39.0 35.6	1044 313	191 47	22 8	7.64 1.00	9.9 9.2
R-78	20-AUG-85	1345	15.5	0.5 14.0	5.0 23.7	6.19 0.25	5.73 0.19	41.9 46.1	0.61 1.54	1.59 1.35	49.6 46.5	2024 1131	3 96 173	40 24	32.9 4.98	12.3 22.8
STIL.PD	21-AU6-85	700 720	10.4	0.5 9.0	2.7 2.8	17.80	4. 68 6.22	47.0 37.4	0.80 0.86	1.71 1.50	38.2 37.0	1621 2557	147 189	33 60	7.76 13.8	26.0 53.5

BIDMONITIORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SDNE) H2ONUTS (Surface and bottom water dissolved and particulate nutrient concentrations at SDNE stations)

			TOTAL	PANDI P		DISSOLV	ED NL	ITRIEN	rs			PARTIC	JLATES				*****
STATION	DATE	TIME	DEPTH (m)	DEPTH	NH4 (uM)	NO3+ND2 (um)	ND2 (um)	TDN (um)	DIP (uM)	TDP (uM)	SI (OH) 4 (uH)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORD (ug/1)	SESTON (mg/l)	CHDLDR (ug/1)
SONE 6	•																
ST.LEO	16-DCT-85	1735 2010	7.3	0.5 6.0	2.1 5.6	2.79 3.46	1.21 1.66	26.8 31.2	0.57 0.64	0.93 0.92	31.4 23.3	1200 791	172 102	18 16	10.3 4.43	8.6 10.9	7.11 2.21
BU.VISTA	16-DCT-85	1415 1515	6.0	0.5 5.0	0.7 0.7	2.12 1.94	0.43 0.44	23.6 25.2	2.30 2.43	3.44 2.70	64.8 62.8	8629 3974	1316 508	114 131	91.9 26.1	39.5 76.8	64.1 15.2
HORN PT.	15-DCT-85	1315 1440	8.2	0.5 7.0	0.5 2.4	1.56 1.55	0.33 0 .44	24.6 28.6	0.43 0.32	0.66 0.60	19.5 14.7	1631 1404	269 187	31 41	16.1 9.39	17.7 38.3	11.3 4.07
WIND.HIL	15-DCT-85	1615 1725	3.6	0.5 2.5	1.5 1.3	8.50 7.90	0.32 0.31	37.2 34.2	1.71 1.57	2.42 2.86	47.8 46.9	3128 8592	3B3 949	73 236	27.4 33.9	31.6 142.7	15.6 13.9
RAG.PT.	17-DCT-85	830	16.2	0.5 15.0	2.7 8.8	1.78 3.05	0.88 1.52	29.4 42.0	0.11 0.19	0.40 0.50	20.9 B.B	867 1573	156 233	14 27	6.43 6.50	4.8 24.8	4. 38 1.56
MD.PŤ.	17-DCT-85	1250	10.0	0.5 8.0	0.7 0.9	17.10 16.80	1.62 1.62	42.8 42.0	1.66 1.62	2.45 2.30	70.B 62.2	2153 6256	312 797	47 201	19.3 35.2	31.1 142.7	12.6 18.6
PT.NO.PT	14-007-85	800	14.1	0.5 13.0	6.4 5.7	2.59 1.88	1.6) 1.12	33.2 27.0	0.13 0.12	0.26 0.29	1.7 4.2	108B 1765	145 225	10 22	12.3 13.7	10.0 25.3	4.77 6.93
R-64	14-DCT-85	1200	16.8	0.5 15.0	1.6 13.8	5.41 3.11	2.28 1.44	32.2 38.4	0.16 0.61	0.76 0.54	15.3 22.1	1097 451	191 92	15 10	11.5 3.87	5.9 10.9	7.93 11.6
R-78	14-OCT-85	1500	15.0	0.5 14.0	2. 7 11.7	15.00 10.80	1.00 0.56	37.8 42.0	0.16 0.56	0.49 0.84	33.9 36.4	2547 1532	444 220	38 37	29.1 7.73	8.5 28.7	18.2 7.15
STIL.PD	15-DCT-85	800 915	10.6	0.5 9.0	5.6 6.8	40.5 0 36.20	1.38 1.18	59.1 57.4	0.56 0.67	1.15 0.96	29.8 29.7	961 3625	127 278	22 76	6.21 8.57	10.0 70.6	3.12 2.38

BIDMONITIORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) H20NUTS (Surface and bottom water dissolved and particulate nutrient concentrations at SONE stations)

2

			TOTAL			DISSOLV	ED NI	JTRIEN	TS			PARTIC	ULATES				
STATION	DATE	TIME	DEPTH	DEPTH (B)	NH4 (UH)	NO3+NO2 (um)	ND2 (um)	TDN (um)	DIP (uM)	TDP (uM)	SI (OH) 4 (uM)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORD (ug/1)	SESTON (mg/l)	CHOLDR (ug/1)
SONE 7				*****							*******	• • • • • • • • • • • •	*****	****		*******	*****
ST.LED	8-MAY-86		7.0	0.5 6.3	0.8 2.3	6.65 23.60	0.37 0.75	27.2 50.4	0.09 0.09	0.26 0.53	3.5 2.5	1160 17 4 9	146 245	10 18	7.2 19.1	B.3 10.0	7.1 18.1
BU.VISTA	8-MAY-86		5.2	0.5 4.7	0.5	0.54	0.15	26.2	0.24	0.61	21.5 18.4	3999 3911	542 528	73 125	36.1	47.4 55.2	33.6
					•••	0,00											
HUKN PI	J-881-86	1139	/.5	0.5 7.4	8.2 0.6	22.50 24.40	0.77	64.2 53.4	0.18	1.34	4.9	1301 1256	165 151	12	9.0 9.3	14.6	8.0 8.8
WIND HIL	3-MAY-86	1900	2.8	0.5	2.3	77.20	0.35	111.6	0.52	1.03	28.0	4487	566	94	24.4	57 . 8	17.6
				2.6	1.6	77.70	0.28	111.8	0.46	0.93	23.6	4402	545	101	28.5	71.0	22.5
RAG PT	6-MAY-86	1040	16.5	0.5	1.0	36.20	0.70	58.7	0.10	0.33	4.8	2935	340	49	34.5	12.2	37.0
				16.0	3.5	27.80	1.00	52.9	0.13	0.22	1.8	2873	354	20	46.5	14.2	47.0
MD PT	7-MAY-86		10.0	0.5	6.0	87.30	1.50	115.4	0.38	0.81	16.9	1908	272	67	18.8	42.6	16.8
				9.8	3.8	79.30	1.12	101.7	0.13	0.28	12.2	3665	463	136	26.6	101.2	22.5
PT NO PT	5-MAY-86	1545	14.4	0.5	2.5	32.70	0.81	57.3	0.09	0.31	1.6	623	92	6	3.4	3.3	3.3
				15.3	4.3	26.40	0.62	51.6	0.05	0.53	1.1	¥28	129	7	7.8	5.0	7.6
R-64	5-MAY-86	1100	16.5	0.5	1.8	42.30	0.74	61.9	0.06	0.21	1.9	5347	697	9	7.1	B.2	7.1
				16.2	15.2	20.40	0.76	49.5	0.09	0.19	3.6	2539	335	17	25.8	10.0	24.4
R-78	4-MAY-86	1030	16.0	0.5		49.60	0.68	79.3	0.09	0.29	25.0	2311	303	22	30.2	12.9	31.9
				16.0	13.2	19.30	0.83	57.0	0.13	0.58	11.3	2194	310	26	22.7	19.0	15.1
STIL PD	4-MAY-B6	1440	9.8	0.5	3.5	76.20	0.65	92.1	0.35	0.58	49.0	1655	169	44	8.5	27.6	5.6
				8.5	5.9	74.50	0.75	102.6	0.40	0.76	45.3	2433	256	51	10.9	45.0	

BIDMONITIORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES (SDNE) H2DNUTS (Surface and bottom water dissolved and particulate nutrient concentration at SDNE station)

			TOTAI			DISSO	VED NUT	RIENTS			•	*****	PARTIC	ULATE	S		
STATION	DATE	TIME	DEPTH (m)	DEPTH (m)	NH4 (uM)	ND2 (uM)	ND3+ND2 (uK)	TDN (um)	DIP (uM)	TDP (um)	SI (OH) 4 (um)	PC (ug/1)	PN (ug/1)	PP (ug/1)	- TOTAL CHLORD) (ug/1)	SESTON (mg/l)	CHLORO
SONE 8														100 000 ayr 100 org 1	*****	gy fin to yn is as <i>in i</i> n	
ST.LED	26-JUNE-86	730	7.2	0.5 5.5	3.5 4.6	0.36 0.36	1.38 1.50	32.3 34.2	0.17 0.09	0.29 0.31	63.6 61.5	1269 1200	253 223	23 25	16.8 12.3	5.B 9.4	16.4 10.1
BU.VISTA	26-JUNE-86	950	5.5	0.5 4.0	2.3 4.7	0.27 0.28	0.41	32.3 34.7	1.37	1.85	76.5 79.8	2411 2737	394 389	52 92	28.7 18.4	20.2 48.4	26.7 13.4
HORN PT	25-JUNE-86	1317	8.0	0.5	1.4	0.14	0.52	32.1	0.24	0.51	61.2	2298	402	34	21.9	12.6	20.2
				6.5	1.3	0.10	0.27	30.5	0.15	0.27	61.4	1762	294	38	11.3	27.2	8.7
WIND HILL	. 25-JUNE-B6		2.8	0.5 1.5	2.1 1.8	0.31 0.28	11.8 11.1	47.3 45.5	1.53 1.54	1.72 1.77	65.8 62.8	4595 5919	53 4 706	10 16	19.2 22.9	63.6 100	12.6 14.6
RAG PT	23-JUNE-86	1015	16.5	0.5	2.8	0.10	0.19	35.0 38 0	0.14	0.52	39.6	1873	413 727	.37	21.7	11.6	18.5
				10.0	u .,	V.10	V+10	JU. V	V. 10	V. J4	11.2	1017	525			10.0	0./
MD PT	23-JUNE-86	1300	9.5	0.5 8.0	3.9 5.3	0.53 0.68	24.80 24.30	57.0 59.0	1.23 1.28	1.50 1.49	41.3 42.2	1892 6726	263 B4B	57 32	11.1 18.3	42.8 25B	8.7 6.0
PT NO PT	24-JUNE-B6	715	14.4	0.5 13.5	3.9 13.0	0.18 0.44	0.52 2.24	34.4 44,4	0.12 0.11	0.19 6.15	2016 3011	1350 727	241 150	18 20	7.8 3.4	9.8 7.0	7.1 3.3
R-64	24-JUNE-86		17.0	0.5 15.5	0.6 27.3	0.14 1.51	0.49 2.90	30.0 54.1	0.16	0.36 0.52	29.3 39.9	1365 552	293 111	25 14	12.3 1.9	4.8 9.9	10.9 0.7
R-7B	24-JUNE-B6		17.4	0.5 15.0	1.2 19.3	0.41 0.64	10.60 4.95	39.8 55.9	0.19	0.49 0.37	44.0 41.3	1936 914	335 174	34 20	20.5 8.3	5.4 3.3	16.B 7.1
STIL PD	25-JUNE-86	900	10.0	0.5 6.0	4.0 4.3	0.59 0.52	55.30 54.90	88.5 82.1	0.67 0.82	0.92 0.93	54.6 53.0	2058 3342	211 290	51 75	12.2 13.4	30.B 53.0	6.9

Appendix Table 3

LONG-TERM BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT (SDNE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H2O and various particulates) Add +244 mV to all Eh data to correct values to hydrogen electrode NDTE:Vertical profiles of particulates collected only during October cruise. NDTE: No surfical particulate samples taken during this cruise.

STATION	DATE	TIME	TOTAL Depth (m)	EH Mesat DEPTH (CM)	Eh (∎V)
ST.LED	27-AU6-84	1035	6.7	0	-272
				-1	-286
				-2	-276
				-3	-233
				-4	-246
				-5	-248
				-6	-248
				-7	-253
				-8	-255
				-9	-264
BU.VISTA	27-AU6-84	1410	3.6	0	-75
				-1	-263
				-2	-270
				-3	-272
				-4	-281
				-5	-298
				-6	-297
				-/	-300
				~8 _9	-303
				-1	-303
HORN.PT	29-AUG-84	1120	7.2	0	-249
				-1	-256
				-2	-27B
				-3	-290
				-4	-291
					-282
				-0	-270
				-7 -P	-345
				-0 -0	-345
				-10	-367
				-11	-381
				-12	-361
WIND.HIL	29-AUG-84	1343	3.6	0 -1	-63
				-2	-257
				-3	-277
				-4	-284
				-5	-292
				-6	-290
				-7	-291
				-8	-304
				-9	-297
				-10	-324
				-11	-340
				-12	

LDNG-TERM BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT (SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H2D and various particulates) Add +244 mV to all Eh data to correct values to hydrogen electrode NOTE:Vertical profiles of particulates collected only during Dctober cruise. NOTE: No surfical particulate samples taken during this cruise.

į.

STATION	DATE	TIME	TOTAL Depth (M)	EH Mesæt DEPTH (CM)	Eh (aV)
RAG.PT	28-AUG-84	1248	13.2	0	-386
				-1	-395
				-2	-402
				-3	-413
				-4	-412
				-5	-450
				-6	-472
				-7	-465
				-8	-453
				-9	-425
				-10	-412
ND.PT	28-AUG-84	1715	7.8	0	-65
				-1	-177
				-2	-365
				-3	-438
				-4	-452
				-5	-502
				-6	-483
				-7	-472
				-8	-503
				-9	-462
PT.ND.PT	28-AUG-94	940	13.0	0	-278
				-1	-332
				-2	-318
				-3	-332
				-4	-342
				-5	-362
				-6	
				-7	-364
				-8	-353
				-9	
R-64	29-AUG-84	B45	16.0	0	-355
				-1	-400
				-2	-410
				-3	-423
				-4	-424
				-5	-426
				-6	-433
				-7	-430
				-8	-438
				-9	-430
				-10	-436
				-11	-442

LONG-TERM BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT (SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,7H2D and various particulates) Add +244 mV to all Eh data to correct values to hydrogen electrode NOTE:Vertical profiles of particulates collected only during October cruise. NOTE: No surfical particulate samples taken during this cruise.

_

÷

STATION	DATE	TIME	TOTAL E Depth (m)	EH Mesøt DEPTH (CM)	Eh (sv)
TOM. PT	30-AU6-84	1100	15.2	0	-238
				-1	-283
				-2	~284
				-3	-302
				-4	-313
				-5	-313
				-6	-324
				-7	-401
				-8	-353
				-9	-450
				-10	-500
				-11	-522
				-12	-440
				-13	-310
				-14	-335
STIL.PD	30-AU6-84	800	9.5	0	-38
				-1	-230
				-2	-257
				-3	-263
				-4	-285
				-5	-291
				-6	-293
				-7	-304
				-7	-294
				-9	-307
				-10	-320
				-11	-354
				-12	-357
				-13	-369
				-14	-404

BIDMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

								.63					
STATION	DATE	TIKE	TOTAL DEPTH (m)	EH Mesmt DEPTH (CM)	Eh (mV)	MID-POIN Sedimen (CM)	T XH2D (2)	PC	SEDIMEN PN	ianal ys Pp	IS,7 CHLORD (mg/m2)	DISSOLV NH4 N (um N)('ED NUTRIEI 103+ND2 101 N)
GDNE 2						****							
ST.LED	17-DCT-84	1419	7.0	0	140								
				-1	100	0.5	81.4	2.42	0.28	0.061		58	5
				-2	-120	1.5	72.5	2.29	0.27	0.057		99	5
				-3	-140	2.5	70.5	2.50	0.31	0.063			
				-4	-155	3.5	70.6	2.74	0.34	0.057			
						4.5	68.9	2.B6	0.32	0.075			
				-6	-155	5.5	67.2	2.88	0.31	0.059			
						6.5	65.5	2.53	0.30	0.056			
				-8	-160								
				-10	-150								
BU.VISTA	17-0CT-84	1222	4.0	0	160								
				-0.5	90								
						0.5	82.5	2,19	0.27	0.134		26	10.2
				-1.5	20								
						1.5	72.5	2.34	0.29	0.145		70	9.3
				-2.5	-140								
						2.5	68.7	2.38	0.28	0.147			
				-3.5	-175								
						3.5	65.B	2.24	0.25	0.124			
				-4.5	-170								
						4.5	62.5	2.15	0.24	0.111			
				-5.5									
						5.5	60.9	2.20	0.25	0.115			
				-6.5	-155								
						6.5	59.4	2.20	0.24	0.109			
				-7.5	-155	_							
						7.5	58.8	2.34	0.22	0.102			

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

						SEDIMENT	PROFILE	S					
STATION	DATE	TIME	TOTAL Depth (m)	EH Meset DEPTH (CM)	Eh (@V)	MID-POINT SEDIMENT (CM)	%H20 (%)	PC	SEDIMEN PN	ANALYS PP	IS,% CHLORD (mg/m2)	DISSDLV NH4 N (um N)(/ED NUTRIENT 103+ND2 1um N)
SONE 2			****	********									
ST.LED	17-DCT-84	1419	7.0	0	140								
				-1	100	0.5	81.4	2.42	0.2B	0.061		58	5
1				-2	-120	1.5	72.5	2.29	0.27	0.057		99	5
				-3	-140	2.5	70.5	2.50	0.31	0.063			
				-4	-155	3.5	70.6	2.74	0.34	0.057			
						4.5	68.8	2.86	0.32	0.075			
				-6	-155	5.5	67.2	2.88	0.31	0.059			
						6.5	65.5	2.53	0.30	0.056			
				-8	-160								
				-10	-150								
BU.VISTA	17-0CT-84	1222	4.0	0	160	•							
				-0.5	90								
						0.5	82.5	2.19	0.27	0.134		26	10.2
				-1.5	20								
						1.5	72.5	2.34	0.29	0.145		70	9.3
				-2.5	-140	ł							
						2.5	68.7	2.38	0.28	0.147			
				-3.5	-175								
						3.5	65.8	2.24	0.25	0.124			
				-4.5	-170	i							
						4.5	62.5	2.15	0.24	0.111			
				-5.5									
						5.5	60.9	2.20	0.25	0.115	i		
				-6.5	-155	i							
						6.5	59.4	2.20	0.24	0.109	t i i i i i i i i i i i i i i i i i i i		
				-7.5	-155	i							
						7.5	58.8	2.34	0.22	0.102	2		

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPRDF (Vertical sediment profiles of Eh,XH20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices icm thick

						SEDIMENT	PROFILE	S					
STATION	DATE	TINE	TOTAL Depth (m)	EH Mesat DEPTH (CM)	Eh (#V)	HID-POINT SEDIMENT (CM)	ZH20 (7.)	PC	SEDIMEN PN	ANALYS PP	IS,% CHLDRO (mg/m2)	DISSOLV NH4 N (um n)(ED NUTRIE 03+NO2 um N)
HORN. PT	15-0CT-85	1628	8.0	0	135						*****	71	7 0
				_1 7	05	0.5	83.2	4.03	V. 23	0.039		/4	/.1
				-1.2	73	1.5	71.6	2.19	0.26	0.058		186	4.8
				-2.2	-60								
•						2.5	70.8	2.58	0.30	0.071			
				-3.2	-150								
					-	3.5	68.4	2.31	0.26	0.069			
				~9.2	-70	15	47 Q	2 32	0.28	0.059			
				-5.2	-80	710	0110	2102	VILD	VI VO /			
						5.5	64.7	2.01	0.26	0.051			
				-6.2	-70								
•						6.5	63.1	1.89	0.23	0.050			
				-7.2	-90								
					110	7.5	60.9	1.98	0.23	0.048			
				-8.2	-110	95	59.6	1.86	0.24	0.045			
				-9.2		0.0	0,10		VILI			-	
						9.5	58.4	1.96	0.24	0.043			
											·		
WIND.HIL	15-DCT-84	1100	4.6	0	130								
				-1	-120	0.5	81.4	4.52	0.36	0.102		117	7.0
				-2	-120	1.5	75.7	7.05	0.52	0.126		240	2.8
				-3	-/0	.2.5	71.0	7.05	V. 32	0.117			
				-4	-110	4.5	72.5		0.50	0.113			
				-6	-70	5.5	69.7	5.51	0.40	0.102			
				-		6.5	71.9	6.16	0.47	0.104			
				-8	-90	7.5	74.3	7.98	0.54	0.120			
						B.5	72.2	6.68	0.49	0.123			
				-10	-180	9.5	70.5	6.80	0.47	0,105			
				-12	-190								
PAG PT	18-DCT-RA	950	15 5	۰ ۱	120								
********	10 801 WT		1010	-i	20	0.5	89.3	3.47	0.48	0.084		163	6.9
				-2	-230	1.5	84.0	3.44	0.46	0.069		229	6.0
				-3	-305	2.5	B 0.7	3.53	0.45	0.066			
				-4	-305	3.5	80.0	3.56	0.47	0.071			
						4.5	79.B	3.51	0.46	0.070			
				-6	-310	5.5	77.1	3.08	0.40	0.061			
					_710	6.5	/7.B	2.93	0.35	0.060			
				-8	-340	0 / J Q 5	73.0	2.12	V.34 A 77	0.038			
				-10	-330	0.J 9 5	72.6	2.71	0.37	0.054			

reason for House

2,

BIDMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SDNE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

TOTAL EH Meset MID-POINT SEDIMENANALYSIS, Z DISSOLVED NUTRIENT STATION DATE TIME DEPTH DEPTH Eħ SEDIMENT %H20 PC PN PP CHLORO NH4 ND3+ND2 (M) (CM) (<u>m</u>V) (CM) (%) (uM N)(uM N) (mg/m2) MD.PT 18-0CT-84 1340 9.5 Û 130 100 0.5 -1 86.4 2.79 0.30 0.117 97 32.3 -2 50 1.5 79.4 2.86 0.31 0.108 27.6 114 -3 -150 74.9 2.94 2.5 0.32 0.121 0.38 0.125 -4 -180 3.5 74.8 3.36 -5 -210 4.5 69.2 2.82 0.31 0.108 -235 -6 5.5 61.4 2.44 0.25 0.094 ί., -7 -220 6.5 60.3 2.35 0.26 0.089 7.5 59.3 2.4B 0.25 0.095 8.5 59.8 2.48 0.26 0.093 PT.ND.PT 17-DCT-84 1810 13.4 160 0 -1 100 0.5 70.8 1.14 0.16 0.031 72 11.8 -2 -110 1.5 57.3 1.56 0.16 0.035 161 4.2 -220 -3 2.5 45.8 0.97 0.12 0.023 -4 -250 3.5 36.4 0.67 0.08 0.021 -5 -280 30.9 0.43 4.5 0.05 0.022 5.5 31.8 0.75 0.07 0.018 -7 -310 6.5 31.7 0.56 0.05 0.022 7.5 37.4 0.68 0.07 0.025 -9 -300 8.5 42.8 1.09 0.12 0.031 -10 9.5 44.5 1.01 0.11 0.032 -11 -280 R-64 16-0CT-84 1810 19.0 Q 160 -1 100 0.5 89.5 2.30 0.36 0.055 218 5.6 -2 90 1.5 80.9 3.83 0.30 0.054 303 4.7 -3 -150 2.5 76.5 2.87 0.35 0.049 -4 -220 3.5 74.8 2.90 0.37 0.052 -5 -210 73.9 2.56 0.31 0.049 4.5 -250 -6 5.5 74.9 2.62 0.31 0.049 6.5 75.5 2.62 0.31 0.051 -8 -250 7.5 74.1 2.68 0.32 0.048 -9 -270 8.5 72.3 2.63 0.32 0.051 9.5 74.0 2.69 0.31 0.049 -300 -11 R-78 16-DCT-84 121B 16.4 0 145 90 -1 0.5 B9.6 0.091 138 6.6 -2 -190 65.8 1.5 0.069 218 3.1 -230 -3 2.5 65.9 2.56 0.19 0.045 -4 -210 3.5 65.3 2.53 0.19 0.047 -5 -220 4.5 64.3 2.53 0.20 0.050 5.5 63.1 2.06 0.17 0.044 -7 -230 6.5 61.0 2.08 0.17 0.043 7.5 62.5 1.66 0.16 0.041 -9 -250

SEDIMENT PROFILES

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices icm thick

						SEDIMENT	PROFILE	S					
			TOTAL I	 EH Mes n t		MID-POINT	· * • • • • • • • • •		SEDIMEN	ANALYS	 15,%	DISSO	VED NUTRIENT
STATION	DATE	TIME	DEPTH (m)	DEPTH (CM)	Eh (∎V)	SEDIMENT (CM)	2H2O (7)	PC	PN	PP	CHLORO (mg/m2)	NH4 (um N)	ND3+ND2 (um n)
STIL.PD	16-0CT-84	1000	10.0	0	40			*****					
				-1	30	0.5	B2.9	4.69	0.24	0.066		27	18.3
				-2	-95	1.5	69.4	4.83	0.25	0.070		103	28.8
				-3	-90	2.5	67.8	4.81	0.26	0.077			
				-4	-105	3.5	67.7	5.06	0.27	0.081			
•				-5	-95	4.5	59.0	3.72	0.21	0.051			
				-6	-145	5.5	56.4	2.78	0.19	0.045			
				-7	-105	6.5	56.3	2.84	0.21	0.051			
						7.5	54.8	2.56	0.21	0.036			
						B.5	52.2	2.32	0.20	0.035			
						9.5	53.0	2.44	0.21	0.034			

BIDMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

						SEDIMENT	PROFIL	ES			
			TOTAL	EH Meset		MID-PDINT		******	SEDIMEN	ANALYS	 IS. 7
STATION	DATE	TIME	DEPTH (M)	DEPTH (CM)	Eh (mV)	SEDIMENT (CM)	%2H2O (%)	PC	PN	PP	CHLORD (mg/m2)
SDNE 3									****		*******
ST.LED	6-MAY-85	830	6.6	1	173						
				0	97						
				-1	-77	0.5		2.67	0.34	0.089	30.9
				-2	-150						
ν,				-3	-150						
1. A.				-4	-1/0						
				-3	-200						
				-0	-195						
					-107						
BU.VISTA	6-MAY-85	1200	4.0	1	197						
				0	-5						
				-1	8	0.5		2.78	0.32	0.166	31.8
				-2	53						
				-3	20						
				-4	-135						
				-5 -6	-111 -146						
HORN.PT	7-MAY-85		7.5	1	185						
				-1	-155	0.5		2.31	0.33	0.079	31.0
				-2	-200						
				-3	-200						
				-1	· 225						
				-5	-210						
				-6	-236						
				-/	-140						
				-8	-210						
WIND, HIL	7-MAY-85	710	4.2	1	200						
				-1	19	0.5		7.45	0.55	0.118	38.2
				-2	135						
				-3	124						
				-4	200						
				-5	100						
RAG.PT	9-MAY-85	700	. 17.0	1	195						
	•			-1	-90	0.5		4.97	0.44	0 00	51 P
				-2	-100					V1 V1	51.0
				-3	-93						
				-4	-110						
				-5	-180						

BIDMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SDNE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

						SEDIMENT	PROFILE	ES			
STATION	DATE	TIME	TDTAL DEPTH (M)	EH Mesæt DEPTH (CM)	Eh (mV)	MID-PDINT SEDIMENT (CM)	2H2O (%)	9 PC	GEDIMEN/ PN	NALYSI PP	IS, Z CHLORD (eg/e2)
MD.PT	9-MAY-85	1030	10.8	1	195						
				-1	150	0.5		2.85	0.33	0.12	26.0
				-2	125						
				-3	-90						
				-4	-165						
				-5	-180						
				-6	-200						
				-7	-210						
				-8	-190						
PT.ND.PT	8-MAY-85	1800	14.5	1	195						
				0	-260	۰ F					70.0
				-1	-230	0.5		4.24	0.56	0.111	38.2
				-2	-200						
				-J _8	-140						
				-5	-100						
				-6	-100						
				-7	-70						
				-8	-60						-
R-64	6-MAY-85	1930	16.8	1	200	i					
				-1	-201	0.5		3.45	0.48	0.08	49.5
				-2	-180)					
				-3	-155	i					
				-4	-210)					
				-5	-25()					
				-6 -7	-270) >					
R-78	7-MAY-85	1655	17.0) 1	200)					
				0	-11()		10 70	A 69		
				-1	-4/() V.J		10.37	V. 52	V. 14	4 40.6
				-1	-76	,)					
				-4	-33(,)					
				-5	-30)					
STIL.Pd -	8-MAY-85	710	9.1	5 1	18	0					
				0	12	0					
				-1	-14	0 0.5		4.92	0.22	0.07	7 11.4
				-2	-10	0					
				-3	-19	5					
				-4	-20	0					
				-5	-18	5					
				-6-	-20	U A					
				-/	-10	v A					
				-8	-18	v					

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

						SEDIMENT	PROFILI	ES			
STATION	DATE	TIME	TDTAL Depth	EH Mesat DEPTH	Eh	MID-POINT SEDIMENT	2H2D	PC	SEDIMEN PN	ANALYS: PP	IS,Z CHLORO
			(M) 	(CA) 	(eV) 	(CM) 	(7)				(mg/m2)
SONE 4											
ST.LED	25-JUNE-85	1100	7.5	1	170						
				0	175						
				-1	147	0.5		2.72	0.40	0.084	24.17
				-2	-100						
N				-4	-80						
ί.				-5	-130						
•				-6	-130						
				-7	-165						
				-8	-140						
BU.VISTA	25-JUNE-85	730	4.6	1	160						
				0	150						
				-1	102	0.5		2.49	0.31	0.152	15.81
				-2	-160						
				-3	-225						
				-4	-227						
					-243						
				-7	-225						•
				-8	-135						
HDRN. PT	26-JUNE-85	700	B.2	2 1	90	1					
				U _1	1/0			n 7/	A 70	A A/A	20 (7
				-7	167	0.5		4.70	0.30	0.004	(1.0/
				-3	-110	1					
				-4	-80	ł					
				-5	-120)					
				-6	-202) -					
				-7	-227						
				-0	-230	1					
RAG.PT	24-JUNE-85	1030	16.5	5 1	-75	j					
				0	-29()					
				-1	-320	0.5		3.37	0.43	0.063	22.94
				-2	-34()					
				3	-36()					
				-4	-337 -272	_)					
	•			-6	-332	-					
				•							

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

						SEDIMENT	PROFIL	ES			
			TOTAL	EH Meset		MID-POINT			EDIMEN	ANALYSI	15,%
STATION	DATE	TIME	DEPTH (M)	DEPTH (CM)	Eh (mV)	SEDIMENT (CM)	2H2O (7)	PC	PN	PP	CHLORD (mg/m2)
~~~~~~~~~~~~				0	162						
				-1	130	0.5		2.71	0.32	0.126	20.5
				-2	115						
				-j	105						
				-4 _5	102						
				ر- ۲-	100						
				-7	121						
				-9	130						
PT.NO.PT	24-JUNE-85	1910	14.4	1	205						
				0	-160						
				-i	-203	0.5		3.27	0.45	0.087	22.33
				-2	-194						
				-3	-235	I					
				-4	-250	•					
					-235						
				-0	-7245	1					
				-8	-203						
R-64	25-JUNE-85	1600	17.5	5 1	16(	)					
				0	-21(	)					
				-1	-23	5 0.5		3.60	0.46	0.078	32.12
				-2	-24(	)					
				2	-293	5					
				-4	-332	2					
				-0	- 34;	) 7					
					-30.	2					
				-8	-40	5 5	•				
R-78	27-JUNE-85	1200	16.	8 1	11	)					
				0	-15	6					
				-1	-24	5 0.5		3.83	0.48	0.087	7 26.00
				-2	-16	6					
				-3	-24	5					
				4	-35	0					
				-5	) -23	2					
				-ć	i −39 i _7/	ა ლ					
				- 1	00	ບ ຊ					
				-1	, −აბ	J.					

BIDMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,XH20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices icm thick

						SEDIMENT	PROFILI	ES				
			TOTAL	EH Meset		MID-POINT	~ - * * * * * *		SEDIMEN	IANALYS	 IS,Z	•
STATION	DATE	TIME	DEPTH (M)	DEPTH (CM)	Eh (eV)	SEDIMENT (CM)	2H2D (7)	PC	PN	PP	CHLDRD (mg/m2)	
STIL.PD	26-JUNE-85	1600	10.4	1	100				****			•
				0	120							
				-1	100	0.5		3.68	0.24	0.074	19.89	
				-2	28							
				-3	-57							
				-4	-43							
1. 				-5	-105							
5 <b>%</b> /				-6	-79							

いったないたいい

BIDMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPRDF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

						SEDIMENT	PROFIL	ES			
			TOTAL	EH Nesat		MID-POINT	*****		SEDIMEN	ANALYS	[S, Z
STATION	DATE	IIME	DEPTH (M)	(CM)	En (mV)	(CH)	(ĩ)	PL	rn.	۲r	(mg/m2)
SONE 5											
ST.LED	22-AU6-85	843	7.9	1	110					· · · ·	20.4
				-1	-180	0.5		2.3/	0.34	0.068	27.4
				-7	-212						
				-4	-230						
				-5	-250						
				-6	-320						
				-7	-260						
				-8	-350						
BU.VISTA	22-AUG-85	1050	5.8	1	-120						
				-1	-200	0.5		2.56	0.34	1.34	24.2
				-2	-230						
				-3	-210						
				-4	-220						
				-5	-220						
				-0	-200						
				-8	-240						
HORN PT	21-AUG-85	1300	8.2	2 1	-110	,					
				-i	50	0.5		2.02	0.31	0.051	30.9
				-2	-228	ł					
				-3	-264	ł					
				-4	-250	)					
				-5	-234						
				-6	-24(	)					
				-7	-280	)	•				
				-8	-250	) .					
RAG.PT	19-AUG-85	957	16.	5 1	14(	)		<b>र</b> र	0 47	0.054	- TA
				-1	-201	) V.J )		0.0	0.47	0.034	- 34
				-1	-754	5					
				-4	-74	>					
				-5	-376	- 3					
				-6	-38	-					
,				-7	-39	)					
				-8	-40	)					
				-9	-40	3					
				-10	-41	D					

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices icm thick

						SEDIMENT	PROFIL	ES			
STATION ,	DATE	TIME	TDTAL DEPTH	EH Mesat DEPTH (CM)	Eh	MID-PDINT SEDIMENT	2H2D	PC	SEDIMEN	IANALYS PP	IS, Z CHLORO
									******		·my/mz/
MD.PT	19-AUG-85	1330	8.8	1	90						
				0	-135						
				-1	-220	0.5		3.26	0.46	0.053	24.2
				-/	-28/						
				-0	-283						
1. S. S. S.				-5	-275						
			•	-6	-300						
PT.ND.PT	20-4/8-85	800	14.3	1	90						
		000	1110	-1	-206	0.5		2.68	0.33	0 112	13 6
				-2	-260	010		1.00	V:00	v.112	1010
				-3	-295						
				-4	-325						
				-5	-320						
				-6	-305						
				-7	-250						
				-8	-295						
				-9	-295						
				-10	-300						•
R-64	20-AU6-85	1212	16.5	1	30						
				-1	-360	0.5		3.33	0.46	0.054	29.7
				-2	-380						
				-3	-404						
				-4	-405						
				-5	-407						
				-6	-412						
R-78	21-AUG-95	1000	15 5	1	170						
n <b>rw</b>		****	10.0	1	-120						
				-1	-250	05		3.91	0 24	0 074	12 0
				-7	-270			01/1	V: 20	V.V/0	14.7
				-3	-350						
				-4	-420						
				-5	-430						
				-6	-412						
				-7	-420						
				-8	-423						
	٠			-9	-419						
				-10	-440						

BIDMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,XH20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

****			TOTAL	EH Mesat		MID-POINT			SEDIMEN	ANALYSIS,Z		
STATION	DATE	TIME	DEPTH (M)	DEPTH (CM)	Eh (nV)	SEDIMENT (CM)	2H2D (7)	PC	PN	PP	CHLORO (mg/m2)	
STIL.PD	21-AUG-85	 B05	10.4	i	100				******			
				-1	50	0.5		3.34	0.24	0.045	14.1	
				-2	-84							
				-3	-180							
				-4	-150							
				-5	-180							
				-6	-180							
			• •	-7	-210							
				-8	-240							
				-9	-230							

SEDIMENT PROFILES

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,XH20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices icm thick

2. 2.							SEDIM	ENT PROFI	LES				
STATION	DATE ,	TIME	TOTAL Depth (n)	EH Nesi DEPTH (CM)	et Eh (æV)	MID-PDINT SED.SLICE (cm)	2H2O (7)	Surf sed PC	SEDIMENT SED CORE PC	ANALYSIS, SURF SED PN	Z SED CORE PN	Surf sed PP	SED CORE
SDNE 6	••••••••••••••••••••••••••••••••••••••			ا حداد هار خوار های عدی هدی هدی هدی			6+ 6+ 4+ 4+ 6+ 4+						
ST.LED	16-0CT-85	2000	7.3	1	190								
- 1. 				-1	180	0.5	B1.9		2.23		0.28		0.071
				-2	85	1.0	/0.4		2.68		0.31		0.072
•				-0	/J 210	75	0/17 11 7		2.00		0.22		0.000
1 - E - E - E - E - E - E - E - E - E -	and the second			-5	-210	3.J 45	61 1		2.01		0.30		0.057
	l.			-6	-250				2127				
÷				-7	-220								
				-8	-185								
				-9	-160								
				-10	-200	9.5	61.9		2.62		0.26		0.050
BU.VISTA	16-0CT-85	1610	6.0	1	160								
				-1	160	0.5	81.9	2.27	2.68	0.31	0.35	0.072	0.135
				-2	150	1.5	77.9	1	2.63		0.27		0.141
				-3	160	2.5	76.1		2.77		0.32		0.143
				-4	145	3.5	74.0	۱.	2.67		0.32		0.149
				-5	115	4.5	69.9		2.58		0.28	•	0.121
				-6	140								
				-7	130								
				-8- -0	-70								
				-10	-100	. 95	68 7	l l	2 59	•	0 31		0 103
				10	100	, , , , , , , , , , , , , , , , , , ,	0114			•			
HORN PT	15-DCT-85	1525	8.2	! 1	161								
				-1	-245	0.5	79.1	2.10	1.B0	0.33	0.27	0.064	0.059
				-2	-245	1.5	71.9	1	2.01	•	0.25		0.066
				-3	-250	2.5	6/.6		1.93	•	0.28		0.053
				-4	-24	v j 3.5	62.(	)	1.86	F	0.2/		0.04/
				-3	-230				1.80		0,2	ļ	V. U44
				-0	24( 216	, 5							
				R	-745 -745	, 5 8.5	57.3	5	1,72	,	0,24	l	0.038
				. <b>.</b>	6-11				1.11	•	V12-	•	

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices icm thick

					n yn tir ân în în în		CHLDRD
			INTERSTITIAL	NUTRIE	ITS		SURF SED SURF SED
STATION -	DATE	TIME	NH4 DIP	ND3+ND	ND2	SI	TOTAL ACTIVE
			(uH N)(uH P)	(uM N)	(uM N)	(uM Si)	(mg/m2) (mg/m2)
SONE 6							
ST.LED	16-0CT-85	2000					
			10.6	0.96	0.26	232	
			13.7	0.44	0.19	254	
			28.0	0.37	0.32	293	
	•		8.9	0.26	0.26	236	
			41.0	1.14	0.19	290	
			25.0	3.64	0.24	229	
-							
BU. VISIH	10-001-83	1010	8.1	0.57	0.22	125	118.0 16.0
			10.2	0.37	0.18	172	
			8.5	0.30	0.15	195	
			6.6	0.37	0.16	216	
			5.5	0.29	0.15	196	
			15.9	1.62	0.13	152	
HORN PT	15-0CT-85	1525	i				
			27.0	1.10	0.42	213	142.0 16.0
			58.0	0.34	0.31	297	
			22.0	0.47	0.37	301	•
			12.3	0.56	0.23	266	
			1.7	0.47	0.25	159	
			18.0	1.55	0.24	171	

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,XH20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

× 				•			SEDIN	ENT PROFIL	LES				
STATION	DATE	TIME	TOTAL Depth (M)	EH Nesi DEPTH (CN)	et Eh (mV)	NID-POINT SED.SLICE (CB)	2H2O (7)	SURF SED PC	SEDIMENT SED CORE PC	ANALYSIS, SURF SED PN	Z SED CORE PN	SURF SED PP	SED CORE PP
WIND HILL	15-0CT-85	1750	3.6	1	180								
				-1	130	0.5	B1.3	5.26	5.11	0.42	0.40	0.108	0.110
				-2	-120	1.5	77.3		6,47		0.50		0.118
н. Х				-3	-150	2.5	76.2		6.3B		0.52		0.128
				-4	-215				6.07		0.49		0.095
				-5	-275	4.5	72.9		6.29		0.48		0.090
	No.			-6	-300								
				-7	-320								
	•			-8	-285								
				-9	-280	9.5	68.6		5.62		0.43		0.100
				-10	-280								
RAG PT	17-0CT-85	1015	16.2		35								
				-1	-215	0.5	88.7	3.78	3.65	0.54	0.51	0.092	0.074
				-7	-300	1.5	83.5		4.22		0.59		0.075
				- 7	-715	25	87.8		3.83		0.49	) 	0.066
				-4	-770	35	82 1		3 31		0.44		0.061
				ت _5	-400	. 4 5	70 7		7 99		0.79	•	0.053
				- J _ L	-430		//		2,00		V1.00		01000
					-430								
				-/	-930								
				~8	-440								
				-4	-410		~		<b>•</b> • •				
				-10	-415	4.5	/4.9		2.66	ł .	0.34		0.000
											•		
	17 AAT AF												
ND PT	17-001-85	1530	10.0	1	160								
				-1	-200	0.5	/8.9	2.56	2,43	0.32	0.28	U.128	0.111
				-2	-200	1.5	/0.4		2.60	)	0.31		0.105
				-3	-240	2.5	69.7		2.7	}	0.31		0.111
				-4	-240	3.5	68.2	2	2.69		0.31		0.117
				-5	-220	) 4.5	66.1		2.55		0.29	1	0.120
				-6	-220	) 							
				-7	-230	)							
				-8	-235	<b>j</b>							
				-9	-240	)							
				-10	-250	9.5	6B.1	l	2.B	1	0.33	5	0.120
•													

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

--------

STATION	DATE	TINE	INTERSTITIAL NH4 DIP (um N)(um P)	NUTRIE ND3+NO (um N)	NTS NO2 (um n)	SI (uM Si)	- CHLORO SURF SED Total (mg/m2)	SURF SED ACTIVE (mg/m2)
WIND HILL	15-DCT-85	1750					, and 40 km the first the star of the second	
			5.9	2.85	0.31	95	135.0	10.6
			28.0	0.78	0.34	313		
			22.0	0.42	0.35	279		
			10.4	0.65	0.27	363		
			6.1	0.55	0.35	3/2		
			8.7	0.39	0.27	337		
DAC DT	17_001_05	1015						
AND FI	1/-061-03	1015	219.0	1.37	0.23	216	136.0	21.3
			189.0	2.12	0.19	185	10010	2110
			144.0	0.75	0.19	290		
			177.0	1.76	0.19	329		
			75,0	1.87	0.19	287		
			47.0	1.08	0.19	243		
ND PT	17-0CT <b>-8</b> 5	1530						
			22.0	1.95	0.27	149	53.9	5.9
			16.0	1.93	0.31	158	•	
			3.5	0.71	0.31	297		
			2.6	0.26	0.23	178		
			1.9	0.84	0.23	355		

2.3 0.76 0.27 357

BIOHONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,ZH20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

SEDIMENT PROFILES HID-POINT SEDIMENT ANALYSIS, Z TOTAL EH Mesat DATE , TIME DEPTH DEPTH EN SED.SLICE ZH20 SURF SED SED CORE SURF SED SED CORE SURF SED SED CORE STATION PP (CH) (mV) (%) PC PC PN **PN** PP (#) (ca) PT NO PT 14-0CT-85 1005 1 204 14.1 0.031 -1 -111 0.5 71.2 1.82 1.50 0.26 0.19 0.042 -2 -190 1.5 58.2 1.28 0.15 0.032 0.033 -3 -500 2.5 58.4 1.82 0.21 1.26 0.15 0.024 -4 -460 3.5 51.2 0.08 0.015 -5 -410 4.5 34.6 0.50 -6 -420 -7 -450 -8 -335 -9 -410 0.11 0.026 -10 -425 9.5 43.4 1.06 -11 -355 1 -120 14-0CT-85 1340 16.8 R-64 0 -210 0.050 -1 -230 0.5 82.8 2.72 2.59 0.35 0.34 0.062 -2 -250 1.5 79.2 2.64 0.35 0.048 0.041 -3 -300 2.5 74.5 2.43 0.30 -4 -360 3.5 78.8 2.54 0.33 0.045 -5 -380 4.5 74.9 2.31 0.30 0.045 -6 -405 -7 -420 -8 -430 -9 -420 8.5 77.9 2.46 0.30 0.048 R-78 14-DCT-85 1645 15.8 1 180 -1 -240 0.5 78.5 3.16 3.66 0.28 0.29 0.078 0.074 -2 -255 1.5 71.7 3.85 0.29 0.059 -3 -355 2.5 71.2 3.26 0.27 0.059 -4 -370 3.5 67.7 3.07 0.26 0.057 -5 -350 4.5 65.9 2.77 0.27 0.054 -6 -350 -7 -365 -8 -350 -9 -400 -10--370 9.5 63.8 2.88 0.24 0.060

BIDMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPRDF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

STATION	DATE	TIME	INTERSTITIAL NH4 DIP (um N)(um P)	NUTRIE) NO3+ND (um n)	NTS ND2 (um N)	SI (uM Si)	SURF SED TOTAL (mg/m2)	SURF SED ACTIVE (mg/m2)
PT NO PT	14-DCT-B5	1005						
			7.0	0.55	0.27	313	135.0	21.1
			115.0	2.96		322		
			39.0	2.08		204		
			39.0	1.11		231		
	•		34.0	2.94		220		
			56.0	2.52		247		
R-64	14-0CT-85	1340						
			81.0	0.76	0.43	530	116.0	15.8
			97.0	1.39	0. 27	490		
			109.0	2.13	0.39	561		
			197.0	1.39	0.31	662		
	·		202.0	1.08	0.47	549		
R-78	14-0CT-85	1645						
			39.0	1.00	0.23	239	110.0	15.8
			30.0	0.73	0.20	218		
			2B.0	0.91	0.25	241		
			30.0	0.78	0.23	198		
			70 0	1 11	A 74	200		

75.0 2.49 0.22 243

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

,								ENI FRUFI					
STATION	DATE ,	TIME	TOTAL Depth (m)	EH Mesa Depth (CM)	t Eh (eV)	MID-POINT SED.SLICE (cm)	ZH2D (7)	SURF SED PC	SEDIMENT SED CORE PC	ANALYSIS, SURF SED PN	Z SED CORE PN	SURF SED PP	SED CORE PP
STIL PD	15-0CT-85	930	10.6	1 -1 -2 -3 -4 -5 -6 -7 -8 -9 -9 -10	177 55 -59 -86 -87 -108 -96 -95 -70 -70 -70 -105	0.5 1.5 2.5 3.5 4.5 9.5	71.9 59.1 58.9 38.9 59.3	3.34	3.37 2.96 3.19 2.77 2.81 2.98	0.32	0.24 0.23 0.27 0.24 0.27	0.038	0.048 0.043 0.035 0.040 0.035

SEDIMENT PROFILES

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

STATION	DATĘ	TIME	INTERSTITIAL NH4 DIP (um N)(um P)	NUTRIE NO3+NO (um n)	NTS ND2 (um n)	SI {uM Si}	- CHLORO SURF SED TOTAL (mg/m2)	SURF SED ACTIVE (mg/m2)
STIL PD	15-0CT-85	930						
			3.1	6.84	0.38	104	42.0	2.1
			5.2	3.33	0.34	250		
			3.8	1.29	0.64	202		
			4.9	2.03	0.35	239		
	•		12.1	3.49	0.23	320		

15.6 2.82 0.27 298

## BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SDNE STUDY) SEDPROF (Vertical sediment profiles of Eh,2H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

						4	SEDIM	ENT PROFI	LES			
STATION	DATE	TINE	TDTAL Depth (M)	EH Kese DEPTH (CM)	Eh (mV)	MID-POINT SED.SLICE (cm)	%H2D (%)	SURF SED PC	ANALYSIS SURF SED PN	, % SURF SED PP	- CHLURU SURF SED TOTAL (mg/m2)	SURF SED ACTIVE (mg/m2)
SONE 7											e	
ST.LED	8-MAY-86	710	7.0	1	110							
				0	35							
				-0.5	18							
S				-1.5	-144	0.5		2.36	0.28	0.067	219.0	95.7
i. Nati				-2.5	-160							
				-3.5	-130							
				-4.5	-11/							
				~J.J ( 5	-155							
				-7.5	-133							
				-2.5	-150							
				-9.5	-124							
				10.5	-175							
BU.VISTA	8-MAY-86	945	5.2	1	174							
				-0.5	200							
				-1.5	170	0.5		2.92	0.35	0.134	168.0	47.8
				-2.5	178						•	
				-3.5	174							
				-4.5	168							
				-5.5	170							
				-6.5	1/0							
				-/.D	-260							
				-8.3	-360	1						
				10.5	-373							
				10.0	V / V							
HORN PT	3-MAY-86	1030	7.5	0	190							
				-1	-199	0.5		2.06	0.28	0.066	307.0	152
				-2	-188	ł						
				-3	-185	į						
				-4	-145							
				-5	-160	Ì						
				-6	-145							
				-7	-198							
				-8	-185	)						
				-9	-150							
				-10	-209	ł						

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SDNE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices icm thick

							SEDIME	ENT PROFIL	LES			
STATION	DATE	TIME	TDTAL DEPTH (M)	EH Mesm DEPTH (CH)	t Eh (#V)	MID-PDINT SED.SLICE (cm)	2H2D (2)	SURF SED PC	ANALYSIS, SURF SED PN	2 SURF SED PP	- CHLORO SURF SED TDTAL (mg/m2)	SURF SED ACTIVE (mg/m2)
WINDY HIL	3-MAY-B6	1810	2.8	0 -1 -2	-110 -280 -223	0.5		4.28	0.33	0.120	71.6	23.0
•				-3 -4 -5	-250 -257 -243							
				-6 -7	-240 -251							
				-8 -9 -10	-217 -235 -227							
RAG PT	6-MAY-86	1000	16.5	-0.5	-95	٥.5		7 5	ń <b>47</b>		210	05.7
				-2.5 -3.5 -4.5	-230 -210 -245	v.J		J.J	0.47		200	, <b>.</b> .
				-5.5 -6.5 -7.5	-260 -285 -290							
				-8.5 -9.5 10.5	-295 -305 -330							
MD PT	7-MAY-86		10.0	1 0	158 -10							
				-1 -2 -3	80 75 140	0.5		2 <b>.4</b> 3	0.28	0.115	148	53.8
				-4 -5 -6 -7	-202 -248							
				-9 -10	-205							
#### BIDMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh, ZH20 and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

		•				SEDIMENT PROFI	LES			
STATION	DATE	TIME	TOTAL Depth (m)	EH Mesmt DEPTH Eh (CN) (mV)	MID-POINT SED.SLICE (cm)	XH2D SURF SEI (%) PC	ANALYSIS,Z ) SURF SED SURI PN I	F SED PP	SURF SED TOTAL (mg/m2)	SURF SED ACTIVE (mg/m2)
PT ND PT	5-MAY-86	1500	14.4	0 5: -1 10 -2 -1: -3 -20	) 0.5 )	2.2	0.28	0.037	196	89.7
(nor (at				-4 -2: -5 -5( -6 -3) -7 -7( -8 -5) -9 -6( -10 -12)	) 3 ) )					
R−64	5-MAY-86	1000	16.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	) 0.5 5 5 2 5 5 5 5 0	2.1	9 0.37	0.059		. 133
R-78	4-MAY-B6	1040	16.0	$\begin{array}{ccccc} 0 & 11' \\ -1 & -8 \\ -2 & -21 \\ -3 & -16 \\ -4 & -16 \\ -5 & -28 \\ -6 & -24 \\ -7 & -19 \\ -8 & -24 \\ -9 & -29 \\ -10 & -33 \end{array}$	5 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.3	6 0.26	0.075	119	. 53.8

BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SDNE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H2O and various particulates) ADD +244 mV to all Eh data to correct to hydrogen electrode. All sediment sample slices 1cm thick

						:	SEDIM	ENT PROFI	LES			
STATION	DATE	TIME	TOTAL Depth (m)	EH Mesi DEPTH (CM)	et Eh (mV)	MID-PDINT SED.SLICE (cm)	XH20 (X)	SURF SED PC	ANALYSIS SURF SED PN	, Z SURF SED PP	SURF SED TOTAL (mg/m2)	SURF SED ACTIVE (mg/m2)
STIL PD	4-MAY-86	1410	<b>5.8</b>	0 -1 -2 -3 -4 -5 -6 -7 -8 -7 -8 -7 -10	160 140 -10 -95 -140 -150 -148 -40 60 80 90	0.5		5.32	0.25	0.075	166	59.8

#### BIOMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPRDF (Vertical sediment profiles of Eh,%H2D and various particulates) ADD +244 to all Eh to correct to hydrogen electrode. All sediment sample slices icm tkick

STATION	DATE	TIME	TOTAL Depth (m)	EH Mesæt DEPTH (CM)	Eh (≝V)	MID-PDINT SEd.SLICE (CM)	ZH20 (Z)	PC.	SEDIMENT AN PN	VALYSIS, Z PP	TOTAL Chloro (mg/m2)	ACTIVE CHLORO (mg/m2)
SONE 8	• <del>(* * * * * * * * * * *</del> * * * * *							****				
ST.LED	26-JUNE-86	730	6.7	1	163							
λ.,				0	161							
- (	k.			· · -1	170	0.5		2.21	0.28	0.077	164	53.8
				-2	160							
				-3	150							
				-4	135							
				-5	-50							
				-6	-155							
				-7	-165							
•				-8	-185							
				-9	-195						•	
				-10	-210							
BU.VISTA	26-JUNE-86	940	3.6	1	150							
				0	138							
				-1	123	0.5		2.83	0.35	0.144	146	47.8
				-2	125							
				-3	142							
				-4	140							
				-5	150							
				-6	120							
				-7	-169				-			
				-8	-95							
				-9	-205							
				-10	-178							
HORN PT	25-JUNE-86	1215	7.2	1	142							
				0	138							
				-1	139	0.5		1.98	0.27	0.051	168	47.8
				-2	123							
				-3	90							
				-4	-85							
				-5	-120							
				-6	-145							
				-7	-165							
				-8	-130							
				-9	-185							
				-10	-150	•						

#### BIDMONITORING PROGRAM: ECDSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H20 and various particulates) ADD +244 to all Eh to correct to hydrogen electrode. All sediment sample slices 1cm tkick

STATION	DATE	TIME	TOTAL Depth (N)	EH Mesnt DEPTH (CM)	Eh (sV)	MID-POINT SEd.SLICE (CM)	2H20 (2)	PC	SEDIMENT ANA PN	PP	TOTAL Chlord (mg/m2)	ACTIVE Chlord (mg/m2)
WIND HIL	25-JUNE-86	1450	3.6	1	153							
-				-0.5	145				• • •			
				-1.5	144	0.5		5.09	0.44	0.101	141	47.8
				7.5	100							
				-3.3	105							
				-4.0	103							
				-6.5	35							
				-7.5	-190							
				-8.5	-185							
•				-9.5	-185							
				-10.5	-165							
RAG PT	23-JUNE-86	850	13.2	1	173							
				0	163							
				-1	90	0.5		3.48	0.46	0.006	230	83.7
				-2								
				-3								
				-4	-30							
				-5	-133							
	•			-6	-21/							
				/- ن_	-280							
				-0 -0	-201							
				-10	-292							
MD PT	23-JUNE-86	1220	9.8	1	145							
				0	120		•					
				-1	150	0.5		2.35	0.27	0.109	152	53.8
				-2	150							
				-3	60							
				-4	-50							
				-5	110							
				-6	-50							
				-7	-45							
				-8	-145							
				-9	-200							
				-10	-200							

PT NO PT 24-JUNE-86

#### BIDMONITORING PROGRAM: ECOSYSTEM PROCESSES COMPONENT(SONE STUDY) SEDPROF (Vertical sediment profiles of Eh,%H2D and various particulates) ADD +244 to all Eh to correct to hydrogen electrode. All sediment sample slices 1cm tkick

STATION	DATE	TIME	TOTAL Depth (M)	EH Meset DEPTH (CM)	Eh (mV)	HID-PDINT SEd.SLICE (CM)	2H20 (2)	PC	SEDIMENT ANA PN	LYSIS,7 PP	TOTAL Chlord (mg/m2)	ACTIVE CHLORD (mg/m2)
R-64	24-JUNE-86	1030	16	1	156	*******						
				0	-10	۸ F		7 77		A A ( 7	004	
1.	s á			-1	-130	V.J		3.33	V.44	0.06/	224	53.7
	· ••:			-3	-175							
				-4	-210							
				-5	-215							
				-6	-210							
				-7	-261							
				-8	-260							
				-9	-280							
				-10	-305						,	
R-78	24-JUNE-86	1900	15.2	1	170							
				0	-150							
				-1	-160	0.5		3.22	0.3	0,067	113	47.8
				-2	-155							
				-3	-215							
				-4	-210							
				-5	-222							
				-6	-142							
				-/	-230							
				-0 _0	-103 -204							
				-10	-195							
		754										
STIL PU	ZO-JUNE-80	/30	7.0	1	156							
				U I	164	^ F		5 74	A 00			
				-1	107	V.D		5./1	0.28	0.091	135	35.9
				-7	100							
				-3	105							
				-5	115							
				-6	95							
				-7	50							
				-B	55							
				-9	30							
	•			-10	45							

١

# SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE ND.	CORE Vol	CORE H20 HEIGHT	TIME (SUM)	TIME	DF F	DEL TA T	DO	NH4	N03+N02	DIP	SI (OH) 4
			(ML)	(M)	(MIN)	HR	MIN	(min)	(M6/1)	(uM-N)	(uK-N)	(uĦ-P)	(uH-SI)
SONE 1						یں بن دی بیار بنا خان خان ہے۔						/ 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200	
BU.VISTA	31-AU6-84	RED	1560	0.11	0	9	26		5.77				
			1560		24	9	50	24	5.40				
			1560		59	10	25	35	4.99				
			1560		99	11	5	40	4.45				
			1560		139	11	45	40	3.77				
	kar:		1560		169	12	15	30	3.34				
			1560		202	12	48	33	2.83				
			1560		246	13	32	44	2.11				
		BLUE	1470	0.10	0	9	27		5.37				
			1470		23	9	50	23	4.95				
			1470		5B	10	25	35	4.39				
		•	1470		<b>9</b> 8	11	5	40	3.67				
			1470		138	11	45	40	3.00				
			1470		168	12	15	30	2.44				
			1470		201	12	4B	33	1.89				
			1470		245	13	32	<b>4</b> 4	1.23				
		GREEN	1610	0.11	0	9	27		5.44				
			1610		23	9	50	23	5.28				
			1610		58	10	25	35	5.05				
			1610		<b>9</b> 8	11	5	40	4.70				
			1610		138	11	45	40	4.43				
			1610		168	12	15	30	4.11				
			1610		201	12	48	33	3.79				
			1610		245	13	32	44	3.26				

SEDIMENT-WATER FLUXES

. ____

------

STATION	DATE	CORE ND.	CORE VDL (ML)	CORE H2O HEIGHT (H)	TIME (SUM) (MIN)	TIME SAMPL HR	DF E Min	DELTA T (min)	D0 (MG/1)	NH4 (uH-N)	ND3+ND2 (um-N)	DIP (um-P)	SI (OH) 4 (um-SI)
ST.LEO	31-AU6-84	1	1080	0.07	 N	10	30				****		
		-	1080		30	11	50	70	4.00				
			1080		80	11	50	50	4.30				
			1080		110	17	20	30 70	4.30				
	•		1080		140	12	50	30 70	7:10				
			1080		185	13	35	45	3.62				
		2	880	0.06	0	10	30		4,78				
			880		30	11	0	30	4.73				
			880		80	11	50	50	4.59				
			880		110	12	20	30	4. 4R				
			880		140	12	50	30	4.40				
			880		185	13	35	45	4.40				
			880		255	14	45	70	3.97				
		2	895	0.06	0	10	30		4.33				
			895		30	11	0	30	3.93				
			895		80	11	50	50	3.23				
			895		110	12	20	30	2.82				
			895		140	12	50	30	2.26				
			895		185	13	35	45	1 52				

#### SEDIMENT-WATER FLUXES

STATION	DATE	CORE NO.	CORE VOL	CORE H20 HEIGHT	TIME (SUM) (KTN)	TIME DI SAMPLE	MTN	DELTA T	DD (NE (1)	NH4 (IIN-N)	N03+N02		SI (DH) 4
				(n) 	(nin) 	nn 				(UN-N)	(UT-N)	(un-r)	(UN-51)
ST.LED	27-AUG-84	BLACK		0.05	0	15	30			36.2	2.01	3.74	109.0
					30	16	0	30		37.5	1.97	3.86	108.0
					60	16	30	30		39.9	2.33	4.21	113.0
					96	17	6	36		44.2	2.40	3.92	118.0
	No. 1				129	17	39	33		43.8	3.48	4.27	121.(
	a.			•	162	18	12	33		44.7	2.30	4.18	125.(
					416	22	26	254		53.1	2.58	3.50	
		BLUE		0.10	0	15	25			19.5	1.31	1.81	80.0
					30	15	55	30		20.1	0.95	1.B1	82.0
					60	16	25	30		22.0	1.18	1.93	86.0
					100	17	5	40		22.1	0.93	1.94	86.1
					134	17	39	34		23.2	1.32	1.98	91.0
					167	18	12	33		24.1	1.64	2.32	93.0
					416	22	21	249		29.4	1.60	2.02	112.(
		GREEN		0.07	0	15	25	0		25.5	1.99	2.73	98.
					30	15	55	30		25.0	1.70	3.06	101.
					60	16	25	30		25.9	2.87	3.36	104.
					100	17	5	40		26.3	1.52	3.26	111.
					134	17	39	34		28.1	1.57	3.29	111.
					167	18	12	33		28.4	1.75	3.25	115.
					415	22	20	248		33.2	2.09	2 67	177

SEDIMENT-WATER FLUXES

RED

0.07

0

56

116

180

245

314

940

940

940

940

940

940

÷

STATION	DATE	CORE ND.	CORE VDL (ML)	CORE H20 HEIGHT (M)	TIME (SUM) (MIN)	TIME C Sample Hr	IF : MIN	DELTA T (min)	D0 (NG/1)	NH4 (uM-N)	N03+N02 (un-N)	DIP (um-P)	SI (DH) 4 (uM-SI)
BU.VISTA	27-AU6-84	RED		0.07	0	15	38			·7.8	1.95	3.66	101.0
					37	16	15	37		9.0	2.87	3.92	108.0
					66	16	44	29		11.2	2.33	4.04	111.0
					102	17	20	36		12.4	4.50	4.26	110.0
	•				135	17	53	33		14.3	2.89	4.25	116.0
					165	18	23	30		15.5	2.47	4.36	115.0
					416	22	34	251		24.1	3.40	4.86	136.0
		WHITE		0.07	0	15	38			3.8	1.11	3.74	95.0
					37	16	15	37		5.0	1.07	3.88	99.0
					67	16	45	30		6.0	2.37	3.93	101.0
					103	17	21	36		7.B	1.52	4.03	105.0
					137	17	55	34		9.4	1.25	4.23	108.0
					167	18	25	30		10.2	1.54	4.35	107.0
					414	22	32	247		18.6	1.11	4.62	124.0
		SILVER		0.08	0	15	38			9.1	1.55	3.58	99.0
					37	16	15	37		10.5	1.82	3.76	103.0
					68	16	46	31		11.2	2.82	3.96	106.0
					105	17	23	37		11.9	6.72	4.11	108.0
					139	17	57	34		12.1	2.88	4.07	112.0
					169	18	27	30		12.8	2.40	4.11	114.0
				,	410	22	28	241		17.8	3.53	4.49	130.0
UNDU DT	20-4110-04	61: UED	115	<b>^</b> ^ ^ ^	٥	13			7 05		0.00	0.00	74 /
nonarri	27 400-04	atcacu	. 115	v v₁vo ∧	V 54	17	54	54	3,7J 7 45	10.1	0.00	V.07	/4.0
			115	ν Λ	114	17	54	. JO . LO	3.43	14-1 14-1	0.04	0.00	07.0
			115	v 6	176	15	54	, 00 . 40	0.10	1 5	V.74 0.00	0.45	04.0
			115	۷ ۸	245	14	20 ·		ידריג זרייג	1.J 7 5	0.77	0.43	07.0
			115	0	305	17	E	5 60		2.1	0.62	0.37	B8.1
HORN, PT	29-AU6-84	WHITE	96	0 0.07	0	12	(	)	4.15	16.6	1.42	1.62	81.
			95	0	56	12	54	56	2.30	12.7	1.17	1.11	94.
			96	0	116	13	5/	5 60	0.66	2.3	1.62	0.83	104.0
			96	0	178	14	51	3 62	0.66	0.4	0.47	0.70	111.
			96	0	245	16	-	5 67	0.58	0.7	0.51	0.97	117.0
			96	0	310	17	1	65	5	0.4	1.05	1.64	120.

#### SEDIMENT-WATER FLUXES

4-4

12

12

13

15

16

17

0

56

56

0

5

14

5.05

3.70

2.25

1.18

1.53

56

60

64

65

69

13.9

5.0

0.4

0.4

0.5

5.3

0.67

0.86

1.17

1.16

0.86

0.52

1.08

0.77

0.40

0.44

0.47

0.38

81.0

81.0

91.0

98.0

100.0

102.0

.

STATION	DATE	CORE ND.	CDRE VDL	CORE H20 HEIGHT	TIKE (SUM)	TIME ( SAMPLI	DF E	DELTA T	DO	NH4	ND3+ND2	DIP	SI (OH) 4
***			(ML)	(M)	(MIN)	HR	MIN	(min)	(M6/1)	(uM-N)	(uH-N)	(uH-P)	(uH-SI)
WIND.HL	29-AUG-84	1	1255	0.09	0	14	35		5.74	7.9	0.78	1.59	42.9
			1255		47	15	22	47	6.09	9.7	1.39	1.53	55.6
			1255		117	16	32	70	6.04	12.6	1.35	1.46	53.5
			1255		195	17	50	78	5.90	13.3	2.76	1.44	54.2
	X.:		1255		255	18	50	60	5.55	13.0	3.10	1.39	55.9
	Ì.		1255	* *	315	19	50	60	4.87	12.6	2.53	1.14	62.7
		2	1074	0.08	0	14	35		5.76	10.0	0.82	1.67	44.8
			1074		50	15	25	50	5.96	14.0	1.73	1.83	49.2
			1074		119	16	34	69	5.61	17.8	1.50	1.85	53.2
			1074		195	17	50	76	5.34	19.0	1.40	1.68	60.4
			1074		255	18	50	60	5.02	21.7	2.16	1.56	58.7
			1074		323	19	58	68	4,45	23.8	2.33	1,50	63.3
		3	655	0.05	0	14	35		5.84	49.6	2.78	2.93	72.4
			655		50	15	25	50	5.87	45,4	3.22	2.68	74.2
			655		123	16	38	73	5.33	54.2	2.79	2.40	85.5
			655		195	17	50	72	4.91	54.6	5.25	2.35	95.6
			655		255	18	50	60	4,44	60.7	3.16	2.35	106.0
			655	i se	295	19	30	40	3.57	60.5	3.12	1.90	110.0
			655	<b>i</b> .	315	19	50	20	3.50	59.3	3.48	1.80	113.0
RAG.PT	28-AUG-84	RED	850	0.06	. 0	13	17		2.91	97.2	1.70	11.20	B1.4
			850	)	62	14	19	62	2.85	128.0	1.42	11.30	94.3
			85(	)	120	15	17	58	2.74	144.0	0.96	11.00	108.0
			B5(	)	176	16	13	56	2.56	155.0	0.95	11.80	118.0
			85(	)	250	17	27	74	2.02	173.0	1.22	14.30	126.0
			85	D	296	18	13	5 <b>4</b> 6	1.41	165.0	0.69	13.70	139.(
			85	0	331	18	48	3 35	1.41	164.0	1.55	14.10	139.0
			85	0	369	19	28	28	0.54	157.0	1.10	13.10	142.0
		WHITE	95	0 0.07	0	13	17	7	3.56	34.4	1.42	5.10	70.(
			95	0	65	14	22	2 65	3.48	52.2	1.12	6.90	81.0
			95	0	125	15	. 22	2 60	2.82	62.8	0.62	7.40	98.
			95	0	179	16	11	5 54	2.30	65.7	0.B0	B.50	94.0
			95	0	252	17	29	8 73	1.54	65.2	0.67	9.30	104.
			95	0	300	18	17	7 48	1.15	56.E	0.69	9.60	108.
			95	0	371	19	21	B 71		35.6	0.52	7,80	119.
		SILVE	R 86	0.06	0	13	1	8	3.63	30.0	0.92	4.10	) 72.
			86	0	57	14	2	5 67	2.84	49.1	0.91	6.70	96.
			86	0	126	15	2	4 59	1.75	64.(	) 0.93	9.20	) 99.
			86	0	195	. 16	2	3 54	7 1.11	69.4	0.69	10.60	) 108.
			86	0	254	17	3	2 69	0.19	73.	5 0.38	3 11.80	) 119.
			86	0	301	18	1	9 4	7 0.12	2 74.0	0.70	) 12.50	) 128.
			B£	50	372	19	- 3	0 7:	l 0.05	5 70.	1.08	3 13.00	) 135.

#### SEDIMENT-WATER FLUXES

ų.

STATION	DATE	CORE NO.	CDRE Vol (ML)	CORE H2D HEIGHT (H)	TIME (SUM) (MIN)	TIME C SAMPLE HR	)F : HIN	DELTA T (min)	D0 (M6/1)	NH4 (uN-N)	ND3+ND2 (um-N)	DIP (uN-P)	SI (OH) 4 (um-SI)
MD.PT	28-AU6-B4	GREEN	960	0.07	0	18	56		6.25	12.8	35.80	2.89	44.3
			960		64	20	0	64	5.40	14.8	35.50	2.52	52.6
			960		120	20	56	56	5.20	12.8	35.10	1.79	79.6
			960		178	21	54	58	4.55	14.1	33.60	1.62	67.3
		BLUE	820	0.06	0	19	0		5.10	34.0	36.10	2.48	51.4
			820		60	20	0	60	4.35	34.0	28.50	1.B6	55.5
			B20		116	20	56	56	4.00	33.4	31.70	1.42	61.7
			820		174	21	54	58	3.60	32.5	25.20	0.96	64.9
		BLACK	1100	0.0B	0	19	0		4.95	9.5	36.00	1,28	49.4
			1100		60	20	0	60	4.35	12.6	35.10	0.87	56.2
			1100		116	20	56	56	3.95	11.3	33.60	0.73	60.5
			1100		174	21	54	58	3.65	9.4	32.00	0,48	64.0
DT NO DT	20 440 04	ODEEN	000		•		25		• / •	10.0			
P1.NU.P1	28-906-84	DKEEN	900	0.06	ע	11	20	70	4.60	17.8	V./I	- 1.13	04.0
			700		17	12	- 44 A7	/7 ED	9.0V	20.0	1.20	0./9	67.4 D1 7
			700		130	15	40	. 37	4.80	18.0	1.00	0,07	01.4 07.4
			700		17/	14	42	37 65	4.JV 4.75	10.0	V./0 A DD	0.31	07.1
			900	) )	319	15	44	62 60	4.33	10.1	1.19	0.40	87. <i>1</i> 94,1
	•	BLUE	98(	) 0.07	0	11	25		4.15	16.4	0.67	1.02	62.1
			981	)	79	12	44	79	4.00	15.5	0.94	0,75	69.1
			78(	)	138	13	43	59	4.00	14.2	0.97	0.63	75.
			980	)	197	14	42	59	3.75	11.4	0.86	0.34	80.
			98	)	259	15	44	62	3.45	7.9	0.74	0.30	85.
			78	<b>)</b>	319	16	. 44	. 60	3.50	5.5	5 1.36	0.47	92.
		BLACK	113	0.08	0	11	25	i	3.60	23.1	0.94	1.34	66.
			113	0	79	12	44	1 75	3.50	20.8	3 1.36	0.Bé	73.
			113	0	138	13	43	5 59	3.75	16.6	5 0 <b>.98</b>	0.50	79.
			113	0	197	14	42	2 59	3.25	12.4	1.1B	0.35	) B4.
			113	0	259	15	44	62	3.30	7.4	4 1.35	0.30	) 89.
			117	n	710	11		1 11	1 7 95	: A .		0.71	54

#### SEDIMENT-WATER FLUXES

λ,

----

STATION	DATE	CORE NO.	CORE Vol (ML)	CORE H2D HEIGHT (M)	TIME (SUM) (MIN)	TIME ( Sample Hr	)F E HIN	DELTA T (min)	DD (MG/1)	NH4 (uH-N)	ND3+ND2 (um-n)	DIP (uM-P)	SI (DH) 4 (um-SI)
R-64	29-AU6-84	GREEN	900	0.06	0	9	 25		4.34	37.5	1.09	1.74	59.1
			900		49	10	14	49	2.82	36.4	2.04	1.85	71.0
			900		122	11	27	73	0.37	29.1	1.21	1.17	98.
			900		170	12	15	48	0.07	27.4	0.46	1.40	100.
	No. or		900		230	13	15	60	0.03	27.5	0.28	1.84	114.
	- ( _m		900	• •	290	14	15	60	0.02	22.1	0.21	1.74	123.0
•		BLUE	1000	0.07	0	9	25		3.15	38.0	0.93	2.84	67.
			1000		49	10	14	49	2.94	43.0	1.02	2.80	76.
			1000		125	11	30	76	2.03	40.0	0.69	2.07	89.
			1000		172	12	17	47	1.28	31.6	0.93	1.44	96.
			1000		233	13	18	61	0.10	15.9	0.38	0.72	106.
			1000		294	14	19	61	0.16	12.4	0.40	0.51	117.
		BLACK	945	0.07	0	9	25		3.84	28.9	0.76	2.16	67
			945		49	10	14	49	3.14	33.2	0.73	2.15	76
			945		127	11	32	78	2.37	32.3	0.68	1.77	B6
			945		174	12	19	47	1.88	28.0	0.60	1.58	93
			945		236	13	21	62	1,11	18.1	0.48	1.18	103
			945		297	14	22	61	0.57	9.1	0.3B	1.01	111
TOM.PT	30-AUG-84	RED	1055	0.08	0	11	17		3.61	26.6	4.65	2.22	61
			1055	)	63	12	20	63	3,84	28.7	4.74	1.53	61
			1055	)	123	13	20	60	3.41	24,9	4,41	0.95	54
			1055	) -	183	14	20	60	2.36	15.3	4.38	0.39	69
			105:	)	273	- 15	50	90	1.13	3.2	4.21	0.41	73
		WHITE	1000	0.71	0	11	17		3.38	20.4	3.71	1.85	61
			1000	0	63	12	20	63	2.64	10.6	3.92	0.67	61
			100	D	123	13	20	60	1.54	0.4	2.65	0.32	63
			100	0	183	14	20	60	0.60	0.4	0.17	0.29	7(
			100	0	278	15	55	5 95	0.22	0.4	0.83	0.30	74
		SILVER	99	0 0.07	0	11	17	,	3.51	28.8	4.83	2.67	61
			<b>99</b>	0	66	12	23	5 66	2.95	24.1	4.42	1.51	6
			79	0	123	13	20	) 57	2.43	18.9	4.29	0.84	6
			99	0	189	14	25	5 65	1.67	7.9	8.44	1.00	) 74
			99	0	. 283	16	(	) 95	0.96	0.7	1:13	0.50	) 8/

#### SEDIMENT-WATER FLUXES

STATION DATE	CORE NO.	CORE Vol (ML)	CORE H2D HEIGHT (M)	TIME (SUM) (MIN)	TINE Sanpl Hr	DF E MIN	DELTA T (min)	D0 (M6/1)	NH4 (uM-N)	N03+N02 (uH-N)	DIP (uM-P)	SI (DH)4 (uH-SI)
STIL.PD 30-AUG-84 6	GREEN	1115	0.80	0	8	45	******	5.20	21.1	47.00	0.75	52.2
		1115		40	9	25	40	4.65	22.5	46.40	0.61	55.1
		1115	•	100	10	25	60	3.90	19.9	43.60	0.32	60.6
		1115		160	11	25	60	3.10	18.3	42.90	0.24	60.5
	•	1115		235	12	40	75	3.32	18.3	41.60	0.19	63.7
		1115	•	295	13	40	60	2.95	15.6	41.40	0.13	67.1
	BLUE	910	0.07	0	8	45		5.40	21.5	46.30	0.55	53.2
		910	al an	40	9	25	40	4.35	21.0	45.50	0.27	58.0
		910		100	10	25	60	3.90	18.9	43.00	0.21	62.7
		910		160	-11	25	60	1.80	15.6	39.40	0.12	69.7
		910		235	12	40	- 75	1.40	14.4	35.10	0.09	75.4
• ·		910		295	13	40	60	1.25	13.4	32.00	. 0.11	81.3
	BLACK	920	0.07	0	8	45		5.95	25.B	47.50	0.46	52.2
		920		40	9	25	40	5.10	24.5	47.60	0.25	55.7
		920	1	100	10	25	60	4.00	19.6	46.70	0.15	61.1
		920	) Alternation	160	11	25	60	2.65	14.5	45.20	0.11	62.2
		920	n de la composition de	235	12	40	75	1.88	10.1	43.20	0.10	63.1
		920	hard a start	295	13	40	60	1.70	6.1	40.60	0.10	68.

#### SEDIMENT-WATER FLUXES

# BIDMDNINTDRIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SDNE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE ND.	CORE Vol (ML)	CORE H20 HEIGHT (M)	TIME Sum (MIN)	TINE DF SAMPLE HR MIN		DELTA (min)	DO (M6/1)	AA VIAL ND.	NH4 (uM-N)	ND3+ND2 (um-N)	DIP (uM-P)	SI (DH)/ (uM-SI)
SONE 2								•				4 10	0 47	20
ST.LED	17-0CT-84	RED	1795	0.13	0	15	55	0	7.62	136	/.10	4.10 A 70	0.65	20
				0.00	- 50	15	20	30	7.30	100		4.05	0.00	30
				0.00	60	10	- 33 - 57	30	7.30	107	0.5	5.64	0.71	31
				0.00	121	1/	30	01 74	1.05	100	/.7 C 0	5 74	0.70	30
				0.00	100	18	20	34 70	0.7J	174	0.0 7 0	5 70	0.00	30
				0.00	185	19	V	20	0.00	1/0	/,0	0 J./V	V. / 4	45
				0.00	235	19	50	עכ	6.63					
		WHITE	2145	0.15	0	15	55	0	7.55	157	8.(	) 4.47	0.65	27
	•			0.00	30	16	25	30	7.42	161	8.3	5 4.36	0.74	27
				0.00	60	16	55	30	7.34	165	i 8.1	5 4.57	0.68	28
				0.00	121	17	56	61	7.10	169	8.6	4.79	0.73	5 29
				0.00	155	18	30	34	7.00	173	5 8.1	7 5.08	0.74	29
				0.00	185	19	0	30	6.92	177	8.9	7 4.97	0.73	5 - 30
				0.00	235	19	50	) 50	6.90					
		RI HE	1965	0.14	0	15	55	5 (	) 7.80	15	8 8.	0 4.15	0.64	28
			1100	0.00	) 30	16	25	5 3(	7.75	163	28.	2 4.36	0.73	3 29
•				0.00	60	16	55	5 30	7.65	16	6 8.	2 4.47	0.71	1 30
				0.00	) 121	17	5/	5 63	1 7.40	17	0 8.	4 4.62	0.7	9 31
				0.00	) 155	18	3(	) 34	4 7.30	17	4 8.	6 4.95	0.7	5 32
				0.0	) 185	19	(	0 31	0 7.20	17	6 B.	9 4.96	0.8	1 31
				0.0	235	19	5	0 5	0 6.95	5				
							-				7.	9 4.27	0.6	4 28
		RI ANK		0.0	0 0	15	5	5	0 8.15	5 15	58.	6 4.08	0.5	2 27
		PEDRK		0_0	0 30	16	2	5 3	0 8.13	5 15	97.	7 3.99	0.5	9 26
				0.0	0 60	16	5	5 3	0 8.25	5 16	37.	8 4.07	0.5	4 26
				0_0	0 121	17	5	66	1 8.34	16	7 7.	8 4.00	0.5	7 26
				0.0	0 175	1 R	5	0 5	4 8.2	8 17	1 7.	8 4.14	0.6	9 26
				0.0	v 105	10		Δ 1	0 0 0	L 17	5 8.	0 4.10	0.5	3 26

# BIDMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CDRE ND.	CORE Vol (ML)	CORE H2D HEIGHT (M)	TIME SUM (MIN)	tine Samp Hr	DF Le Min	DELT# (min)	D0 (N6/1	AA VIAL ) NO.	NH4 (uM-N)	ND3+ND2 (um-N)	DIP (um-P)	SI (DH) (uH-SI
RI UISTA	17-0CT-84	RED	1945	0.14	0	12		8 (	) 7.62	130	8.7	3.10	1.52	49
Puttion	17 007 0.			0.00	50	12		58 50	) 7.45	134	8.9	3.43	1.55	46
				0.00	106	13		54 5	5 7.15	140	10.7	3.50	1.58	50
	and the second sec			0.00	146	14		34 4	6.93	144	9.3	3.58	1.51	49
				0.00	176	15		4 3	6.80	148	8.8	3.70	1.61	47
	•			0.00	207	15		35 3	1 6.68	152	10.2	3.33	1.91	52
		WHITE	1910	0.14	-0	12		8	0 7.20	131	8.8	3.0B	1.58	47
				0.00	50	12		58 5	0 7.00	135	8.9	3.33	1.60	49
				0.00	106	13		54 5	6 6.BC	141	8.9	3.00	1.36	49
				0.00	146	14		34 4	0 6.65	145	i 9.2	3.73	1.58	52
				0.00	176	15		4 3	0 6.52	2 149	9.3	3.90	1.61	50
				0.00	207	15		<b>35</b> 3	1 6.5	153	5 9.5	5 4.12	1.60	) 53
		BI LIF	1905	0.14	0	12		B	0 6.9	132	2 8.8	3.15	1.48	3 47
				0.00	50	12		58 5	0 6.6	3 130	5 9.0	) 3.15	1.50	) 49
				0.00	106	13		54 5	6 6.7	) 142	2 9.1	5 3.48	1.60	) 44
				0.00	146	. 14		34 4	0 6.5	8 14	6 10.6	5 3.47	1.57	7 48
				0.00	176	15		4 3	0 6.5	0 150	0 10.3	2 3.66	1.57	7 48
				0.00	) 207	15		35 3	1 6.4	8 15	4 10.	1 4.04	1.64	4 39
		BLANK	940	0.07	Г О	12		8	0 7.9	3 12	9 9.	0 2.98	1.4	4 47
				0.00	) 50	12		58	50 7.9	4 13	3 8.	4 2.97	1.4	B 46
				0.00	) 106	13		54	56 7.9	8 13	97.	9 2.05	1.0	7 44
				0.0	0 146	14		34	40 7.9	8 14	38.	7 2.72	1.3	6 30
				0.0	0 176	15		4	50 8.0	2 14	79.	4 3.10	1.4	3 46
				0.0	0 207	15		35	31 8.0	7 15	1 9.	6 3.02	1.4	0 43

# BIOMONINTORIN PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE NO.	CORE Vol (ML)	CORE H20 HE16HT (M)	TIME Sum (MIN)	TINE Sampl Hr M	OF E IIN	[ . (	)ELTA (min)	DD (M6/1)	AA VIÁL NO.	NH4 (uM-N)	N03+N02 (uM-N)	DIP (um-P)	SI (OH) 4 (uH-SI)
HORN.PT	15-0CT-84	RED	2075	0.15	0	18		20	0						
				0.00	30	18	1	50	30	8.70	23	3.3	2.24	0.38	27
				0.00	60	19		20	30	8.50	- 38	4.8	2.27	0.38	20
				0.00	90	19	1	50	30	8.40	42	5.8	2.31	0.62	25
				0.00	130	20		30	40	8.20	- 46	6.1	2.62	0.44	26
				0.00	160	21		0	30	8.05	50	7.9	2.33	0.91	22
				0.00	197	21		37	37	7.90					
•				0.00	250	22		30	53	7.65					
		WHITE	1950	9.14	0	18		20	0	8.60	30	3.0	2.25	0.23	24.2
	•			0.00	30	18		50	30	8.43	34	3.9	2.29	0.24	18.2
				0.00	60	19		20	30	8.30	39	5.4	2.45	0.25	24.2
				0.00	90	19		50	30	8.10	43	3.5	1.89	0.32	18.6
				0.00	130	20		30	40	7.90	47	4.4	2.26	0.35	27.3
				0.00	160	21		0	30	7.75	51	5.3	2.90	0.30	15.6
				0.00	197	21		37	- 37	7.60					
				0.00	250	22		30	53	7.40					
		BLUE	1850	0.13	0	18		20	0	8.70	31	2.7	1.70	0.18	3 24.0
•				0.00	30	18		50	30	8.52	35	5 3.3	5 2.49	0.27	7 26.1
				0.00	60	19		20	30	8.35	4(	) 4.:	3 2.41	0.29	28.2
				0.00	90	19		50	30	8.30	44	4.(	2.66	0.35	5 29.1
				0.00	) 130	20		30	40	7.45	4	B 5.3	2 2.92	0.43	3 26.0
				0.00	) 160	21		0	30	7.30	5:	2 10.0	3.03	0.41	24.7
				0.00	) 250	21		57							
				0.00	)	22		30	90	7.20					
		<b>BI ANK</b>	940	0.07	7 0	18		20	C	9.30	3	2 1.	2 1.75	0.2	7 24.7
				0.00	> 30	18		50	30	9.30	3	6 1.	5 1.42	0.1	3 24.7
				0.00	0 60	19		20	30	9.30	3	7 1.	3 1.79	0.1	9 20.4
				0.00	90	19		50	30	9.26	4	1 1.	2 1.46	0.1	6 22.7
				0.00	0 130	20		30	- 4(	9.24	4	51.	3 1.89	0.1	7 18.2
				0.0	0 160	21		0	30	9.20	4	91.	5. 1.40	0.1	9 24.7
				0.0	0 197	21		37	37	9.14					
				0.0	0 250	22		30	53	5 9.11					

# BIDMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE ND.	Core VDL (NL)	CORE H2D HEIGHT (M)	TIME SUM (MIN)	TINE Sampi Hr	DF Le Min	DE (1	ELTA in)	D0 (M6/1)	AA VIAL ND.	NH4 (uM-N)	ND3+ND2 (um-N)	DIP (um-P)	SI (OH) 4 (uM-SI)
		005	1515	0.11	0	14		13	0	7.69	8	7.4	6.07	1.18	40.6
WIND.HIL	15-001-84	KEV	1919	0.00	30	14		43	30	7.38	12	9.8	6.07	1.22	39.4
				0.00	60	15		13	30	7.10	16	10.3	6.05	1.14	44.5
	· · · · · · · · · · · · · · · · · · ·			0.00	90	15		43	30	6.90	20	11.7	6.03	1.16	45.0
	(m.)			0.00	120	16		13	30	6.70	24	14.2	5.98	1.17	45.5
	•			0.00	164	16		57	44	6.40					
				0.00	192	17		25	28	6.25					
				0.00	224	17		57	32	6.05					
			ан сайна Ал												
					_	•-			٨	D 10		4	6.70	1.22	41.4
		WHITE	1460	0.11	0	13		40	V 70	0.17 D 00		5	7 6.34	1.30	36.1
				0.00	30	14		15	3V 70	7 15	17	, 01 . 7.,	4 6.38	1.34	37.4
				0.00	60	14		43	30	7.0J	1	7 9.	4 6.39	1.39	42.7
				0.00	90	15		13	30	7.33		, ,, , 9	R A.39	1.39	7 47.1
				0.00	120	15		43	30	1.12	<u>ل</u> ے ان	, ,, 5 11	2 5.96	1.3	5 38.3
				0.00	) 150	16		13	<u>،</u>	0.70	£1				
				0.00	) 194	16		3/	44	1 11					
				0.00	) 222	17		25	28	0.40					
				0.00	) 254	17		วเ	34	0.00					
		<b>51 U</b>		0.1	۰ ۱	13		43	(	8.13		59.	2 6.10	1.3	4 43.9
		BLUE	1470	0.1	1 V 0 30	14		13	30	7.78	1	0 11.	6 6.24	1.4	1 46.9
				0.0	0 - YU	14		43	30	7.41	1	4 13.	7 6.12	i.4	6 50.3
				0.0	V 0V	15		13	3(	7.10	1	8 16.	7 6.12	1.4	4 53.1
				0.0	v 70 N 170	15		43	3	6.90	2	2 16	8 5.52	1.3	8 53.9
				0.0	v 120 N 150	16		13	3	0 6.65	2	26 17.	.9 6.12	1.4	3 57.8
				0.0	N 104	16		57	4	4 6.44					
				v.v م م	V 177 0 777	17		25	2	B 6.35					
				0.0	V 111				_						

# BIOMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CDRE ND.	CORE Vol (ML)	CORE H2D HEIGHT (M)	TINE SUM (MIN)	TINE ( SAMPL) HR N	df E In	DELTA (min)	D0 (M6/1)	AA VIAL ND.	NH4 (uM-N)	ND3+ND2 (uH-N)	DIP (um-P)	SI (OH) (uH-SI
RAG PT	18-001-84	RED	2100	0.15	0	10	48	0	6.65	208	10.3	2.30	0.27	16.0
NUMBER	10 001 01			0.00	30	11	18	30	6.55	212	11.4	2.34	0.32	16.3
	•			0.00	60	11	48	30	6.45	216	12.6	2.54	0.96	16.7
				0.00	. 94	12	22	- 34	6.30	220	13.0	2.56	0.34	17.0
				0.00	189	13	57	95	5.96	224	15.2	2.78	0.28	20.5
				0.00	222	14	30	33	5.83	228	16.0	2.83	0.26	20.9
		WHITE	2280	0.16	0	10	48	0	6.85	209	10.1	2.19	0.30	14.5
-1				0.00	30	11	18	30	6.68	213	10.9	2.39	0.35	i 15 <b>.</b> 7
				0.00	60	11	48	30	6.58	217	11.5	2.49	0.51	13.6
	•			0.00	94	12	22	- 34	6.44	221	13.1	2.40	0.49	16.8
				0.00	189	13	57	95	6.11	225	i 14.2	2.47	0.26	» 1B.9
				0.00	222	14	3(	) 33	6.00	229	14.4	2.97	0.46	20.4
		RI UE	2300	0.17	0	10	41	0	6.90	210	) 10.5	5 2.30	0.27	7. 15.7
				0.00	30	11	- 11	30	6.80	214	11.2	2 2.33	0.34	16.4
				0.00	60	11	4	30	6.70	218	3 11.9	2.39	0.27	7 16.8
				0.00	94	12	2	2 34	6.60	222	2 12.2	2 2.47	0.33	3 17.5
				0.00	189	13	5	7 95	5 6.24	220	5 13.9	9 2.69	0.23	3 19.5
•				0.00	) 222	14	3	) 33	5 6.17	230	0 14.	8 3.22	0.30	6 20.7
		BLANK		0.00	) 0	10	4	3 (	6.93	203	7 8.	B 2.31	0.20	6 13.0
				0.00	) 30	11	1	B 30	0 7.09	21	1 2.	2 2.43	0.33	2 12.5
				0.00	) 60	.11	4	B 30	0 7.04	21	58.	9 2.35	0.B	2 12.8
				0.0	94	12	2	2 34	4 7.14	21	99.	8 2.30	0.3	2 14.3
				0.0	) 189	13	5	7 9	5 7.16	22	39.	5 2.30	0.2	4 13.0
				0.0	222	14	3	0 3	3 7.14	22	7 B.	6 2.33	0.2	5 12.9

# BIDMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE NO.	Core Vol (hl.)	CORE H2D HEIGHT (N)	TIME SUM (MIN)	TIME SAMP HR	DF Le Min	DELTA (min)	DO (M6/1)	AA VIAL ND.	NH4 (uM-N)	ND3+ND2 (um-N)	DIP (um-P)	SI (DH) (uM-SI
	10_007_01	PED.	 2550	0.18	 0	15	42	0	7.20	234	B.0	31.40	i.52	34.8
<b>NV</b> 171	10-001-04	KLD	1000	0.00	30	16	17	30	7.55	238	8.7	31.10	1.58	31.3
				0.00	60	16	42	30	7.45	242	B.2	31.50	1.51	31.8
	in the second			0.00	90	17	12	30	7.38	246	8.2	31.60	1.52	31.0
	\. <del></del>			0.00	120	17	42	30	7.16	250	8.5	31.40	1.55	31.2
				0.00	150	1B	12	2 30	7.10	254	7.9	31.60	1.55	28.3
		NHITE	2485	0.18	0	15	4:	2 0	7.30	235	7.9	30.70	1.49	30.9
		W11116	1.00	0.00	30	16	1	2 30	7.27	239	8.3	31.00	1.54	33.0
				0.00	60	16	4	2 30	7.20	243	8.0	31.00	1.50	33.0
				0.00	90	17	1	2 30	7.11	247	8.3	31.30	1.66	33.4
				0.00	120	17	4	2 30	6.95	251	8.6	31.20	1.58	33.7
				0.00	150	18	i	2 30	6.90	255	7.7	31.20	1.52	34.0
		RI HE	2525	0.1B	0	15	4	2 0	7.25	236	7.7	30.70	1.47	33.8
		PLUL	2020	0.00	30	16	1	2 30	7.34	240	) <b>8.</b> 1	31.00	1.43	35.0
				0.00	60	16	4	2 30	7.27	244	7.9	30.90	2.09	34.2
				0.00	90	17	1	2 30	7.20	248	3 7.4	31.00	1.48	34.3
				0.00	120	17	4	2 30	7.16	252	2 7.	5 30.90	1.45	5 35.2
				0.00	) 150	18	1	2 30	) 7.05	25	5 8.1	2 31.10	1.5	30.9
		BLANK		0.00	) 0	15	4	2 (	7.56	233	5 B.	6 29.60	1.42	2 35.3
				0.00	) 30	16	1	2 3	0 7.62	23	7 8.	3 25.00	1.5	34.2
				0.0	) 60	16	4	2 3	0 7.54	24	1 8.	3 29.70	1.6	7 34.6
				0.0	0 90	17	1	2 3	0 7.55	24	58.	3 29.80	1.4	0 34.1
				0.0	0 120	17	1	2 3	0 7.62	24	97.	5 29.60	1.3	4 35.2
				0.0	0 150	18		2 3	0 7.58	25	38.	0 29.70	1.2	6 36.4

# BIOMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CÓRE No.	CORE VDL (ML)	CORE H20 HEIGHT (N)	TINE SUM (MIN)	TI SA HR	HE DF HPLE Min	. 1	DELTA (min)	D0 (MG/1)	AA VIAL ND.	NH4 (uM-N)	ND3+ND2 (uH-N)	DIP (uM-P)	SI (OH) (uM-SI
PT.ND.PT	17-DCT-84	RED	2400	0.17	0	19		15	0	8.00	180	8.5	1.84	0.25	13.7
				0.00	35	19		50	35	7.85	186	9.1	1.78	0.22	14.8
				0.00	95	20		50	60	7.65	190	9.3	1.92	0.23	16.2
				0.00	- 133	21		28	38	7.50	194	9.8	2.01	0.22	17.1
				0.00	165	22		0	32	7.40	198	9.6	2.45	0.27	17.6
				0.00	195	22		30	30	7.29	202	9.9	2.19	0.21	18.2
		WHITE	1900	0.14	0	19		15	0	7.70	181	9.4	1.49	0.26	15.2
				0.00	35	19		50	35	7.55	187	9.9	1.58	0.27	16.3
				0.00	95	20		50	50	7.50	191	10.7	1.72	0.24	18.1
				0.00	133	21		28	38	7.20	195	11.3	2.04	0.26	18.9
				0.00	165	22		0	32	7.05	199	11.6	1.96	0.25	17.8
				0.00	195	22		30	30	6.97	203	12.5	2.34	0.27	20.6
		BLUE	2210	0.16	0	19		15	0	7.50	182	9.6	1.66	0.24	15.5
				0.00	35	19		50	35	7.40	198	10.2	1.80	0.25	17.0
				0.00	95	20		50	60	7.13	192	10.8	2.07	0.23	18.6
				0.00	133	21		28	38	7.00	196	11.2	2.26	0.24	19.6
				0.00	165	22		0	32	6.85	200	11.6	2.13	0.22	20.6
				0,00	195	22		30	30	6.72	204	12.2	2.25	0.21	21.5
		BLANK		9.00	0	19		15	0	8.20	179	8.4	1.25	0.27	13.2
				0.00	35	19		50	35	8.19	185	8.2	1.34	0.26	13.2
				0.00	95	20		50	60	8.14	189	8.3	1.52	0.28	13.6
				0.00	133	21		2B	38	8.20	193	8.6	1.27	0.26	13.3
				0.00	165	22		0	32	8.14	197	8.2	1.28	0.26	13.4
				0.00	195	22		30	30	8.18	201	8.1	1.36	0.28	13.4

# BIOMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE ND.	CDRE Vol (ML)	CORE H2D HEIGHT (M)	TINE Sum (min)	tin San Hr	IE OF IPLE Min	• ]	DELTA (min)	DD (NG/1)	AA VIAL ND.	NH4 (uM-N)	ND3+ND2 (um-N)	DIP (um-P)	SI (OH) (uM-SI
R-64	16-DCT-84	RED	1845	0.13	0	 1B		27	0	7.15	102	13.8	3.13	0.54	22.1
K DI	10 001 01			0.00	31	18		58	31	6.85	106	14.4	3.00	0.48	24.1
			•	0.00	6B	19		35	37	6.64	112	15.2	2.95	0.45	26.7
	مىنى بىرى قىيەن			0.00	106	20		13	38	6.41	116	17.9	3.07	0.55	27.5
				0.00	148	20		55	42	6.20	120	16.6	2.96	0.46	29.9
	·			0.00	208	21		55	60	5.92	124	17.6	2.90	0.45	31.6
		WHITE	1800	0.13	0	18		27	0	7.03	103	13.9	2.46	0.66	22.8
		,		0.00	31	18		58	31	6.82	107	16.4	2.45	0.60	24.2
				0.00	68	19		35	37	6.68	113	15.5	2.68	0.54	27.1
				0.00	106	20		13	38	6.50	117	16.3	2.45	0.52	27.8
				0.00	148	20		55	42	6.30	121	16.6	2.57	0.51	28.2
				0.00	208	21		55	60	6.08	125	18.5	2.53	0.59	34.3
		BLUE	1670	0.12	0	18		27	0	7.15	104	13.6	2.90	0.40	21.3
				0.00	31	18		58	31		108	13.7	2.83	0.42	22.2
				0.00	6B	19		35	37	6.80	114	14.1	3.07	0.45	25.3
				0.00	106	20		13	38	6.68	118	15.3	3.03	0.44	27.2
				0.00	14B	20		55	42	6.55	122	15.1	2.99	0.40	29.2
				0.00	208	21		55	60	6.39	126	16.9	3.12	0.45	32.9
		BLANK		0.00	0	18		27	0	7.44	101	12.2	2.00	0.51	18.6
				0.00	31	18		58	31	7.88	105	14.2	2.21	0.45	i 18.6
				0.00	68	19		35	37	7.61	111	12.2	2.44	0.49	19.2
				0.00	106	20		13	28	7.64	115	12.9	2.14	0.46	, 18.1
				0.00	148	20		55	42	7.89	119	12.4	2.20	0.43	\$ 19.1
				0.00	208	21		55	60	7.96	123	. 12.1	2.27	0.43	18.7

#### BIOMONINTDRIN PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE NO.	CDRE VDL (ML)	CORE H20 HEIGHT (M)	TIME SUM (MIN)	T1N SAN HR	IE DF IPLE NIN	DELTA (min)	00 (MG/1)	AA VIAL ND.	NH4 (uM-N)	ND3+ND2 (um-N)	DIP (um-P)	SI (OH) (uM-SI
	16-DCT-84	RED	1820	0,13	0	13	5	3 0	6.35	B2	14.5	5.17	0.73	14.2
				0.00	29	14	- 2	2 29	6.30	86	14.2	5.63	0.77	26.2
			•	0.00	63	14	5	6 34	6.20	90	14.5	6.13	0.BO	17.6
				0.00	- 97	15	3	0 34	6.18					
				0.00	110	15	4	3 13	6.15	94	14.3	5.29	0.6B	27.2
				0.00	233	17	4	6 123	5 6.00	98	14.5	7.42	0.77	29.6
		WHITE	1865	0.13		13	Ę	3 (	6.65	83	9.6	5.43	0.73	18.9
				0.00	29	14	2	2 24	6.55	87	15.5	5.44	0.70	17.1
	· .			0.00	63	14	· .	6 34	6.50	91	14.7	5.48	0.71	19.6
	÷.1			0.00	97	15	3	0 34	6.52					
				0.00	110	15	1	3 13	5 6.50	- 95	17.6	6.17	0.75	27.1
				0.00	233	- 17	4	6 12	3 6.25	99	15.5	6.85	0.77	27.3
		BLUE	1810	0.13	0	13	1	i3 (	6.43	84	11.3	5.86	0.66	21.5
				0.00	29	14		2 2	9 6.40	88	14.3	6.13	0.66	25.8
				0.00	63	14	1	i6 34	4 6.35	<u> </u>	15.7	6.47	0.65	26.3
				0.00	97	15		50 3	4 6.35					
				0.00	110	15		13 1	3 6.35	96	5 13.7	6.80	0.63	27.0
	· ·			0.00	233	17	1	6 12	3 6.18	100	) 14.(	7.67	0.66	28.9
		BLANK	940	0.07	0	13	1	53	0 7.34	81	14.4	3.60	0.58	3 23.5
				0.00	29	14		22 2	9 7.30	85	5 13.3	4.55	0.70	) 22.9
				0.00	63	14		56 3	4 7.32	89	7 14.0	) 3.05	0.52	2 11.6
				0.00	97	15		30 3	4 7.59					
				0.00	- 110	15		13 1	3 7.57	- 93	5 12.3	3 4.41	0.69	19.4
				0.00	233	17		46 12	3 7.40	97	7 14.1	4.63	0.65	23.0

# BIOMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SDNE stations)

STATION	DATE	CDRE ND.	CDRE VDL (ML)	CORE H2D HE16HT (M)	TIME SUM (NIN)	tin San Hr	E DF Ple Nin	DELTA (min)	DO (M6/1)	AA VIAL ND.	NH4 (um-n)	ND3+ND2 (um-N)	DIP (um-P)	SI (OH) (uH-SI
STIL.PD	16-DCT-84	RED	2025	0.15	0	10		5 0	8.45	56	6.9	29.40	0.31	25.7
		+1		0.00	40	10	4	5 40	8.40	60	7.3	29.40	0.35	25.6
	1. N			0.00	70	11	1	5 30	8.28	64	7.6	29.50	0.38	25.6
	يون من الأر المعالم			0.00	. 143	12	2	B 73	7.95	69	8.8	29.50	0.47	27.7
				0.00	183	13		8 40	7.82	74	9.2	29.40	0.35	27.6
				0.00	213	13	3	8 30	7.75	78	9.5	28.90	0.37	23.1
		WHITE	2050	0.15	0	10		5 0	8.00	57	7.7	29.80	0.32	26.2
				0.00	40	10	4	5 40	7.90	61	7.3	30.20	0.35	23.6
				0.00	70	11	1	5 30	7.80	65	7.5	29.50	0.36	22.5
				0.00	143	12	2	8 73	7.55	70	8.5	29.60	0.33	21.9
				0.00	183	13		8 40	7.47	75	B.9	29.70	0.40	23.0
				0.00	213	13		8 3(	7.40	79	9.4	24.60	0.36	12.5
		BLUE	2090	0.15	0	10		5 (	8.00	58	7.0	29.80	0.32	26.6
				0.00	40	10	1	5 40	7.95	62	8.1	29.80	0.32	26.1
				0.00	70	11	1	5 30	7.86	66	9.1	29.40	0.32	27.2
				0.00	143	12	1	8 73	5 7.72	71	8.3	29.70	0.30	25.9
				0.00	183	13		8 4(	)					
				0.00	213	13	-	8 30	> 7.40	80	9.3	17.20	0.30	27.2
		BLANK	940	0.07	0	10		5 (	8.85	55	5.3	29.20	0.42	24.7
				0.00	40	10	4	5 40	) 8.82	55	- 5.2	28.50	0.25	25.4
				0.00	70	11		5 3	8.80	63	5.1	29.70	0.37	17.2
				0.00	143	12		28 73	3 8.79	66	3 4.8	3 29.00	0.30	) 16.7
				0.00	183	13		8 4	D 8.80	73	5.2	2 1B.00	0.21	23.9
				0.00	213	13		3B 34	0	77	5.3	3 28.50	0.30	) 23.6

# BIOMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SDNE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SDNE stations)

STATION	DATE	CDRE ND.	cdre Vol	CORE H2D HEIGHT	TIME	T I Sa	ME DF Mple		DELTA	DD	AA VIAL	NH4	ND3+ND2	DIP	SI (DH)
			(ML)	(Ħ)	(MIN)	HR	MIN		(min)	(MG/1)	NO.	(uM-N)	(uH-N)	(uH-P)	(uM-SI
SONE 3															
ST.LED	6-MAY-85	BLANK		0.00	0	10		40	0						
	i ku		•	0.00	15	10		55	15		2	5.1	6.60	0.37	8.5
	(*** Literation			0.00	50	11		30	35	6.62	6	5.6	6.60	0.27	7.4
				0.00	121	12		41	71	6.75	12	5.1	6.60	0.22	7.4
				0.00	170	13		30	49	6.65	17	5.1	6.50	0.23	7.8
				0.00	200	14		0	30	6.70	21	5.5	6.70	0.61	7.9
				0.00	245	14		45	45	6.96	29	5.4	6.60	0.26	8.3
		GREEN	2750	0.20	0	10		40	ΰ	6.45					
				0.00	22	11		2	22		3	5.8	6.10	0.19	12.2
				0.00	50	11		30	28	6.05	8	6.4	6.20	0.21	15.8
				0.00	121	12		41	71	5.35	13	6.8	6.20	0.23	19.3
				0.00	170	13		30	49	4.90	18	7.3	6.30	0.25	22.0
				0.00	200	14		0	30	4.90	22	7.9	6.40	0.3B	24.3
				0.00	245	14		45	45	4.35	30	8.6	6.20 _.	0.28	26.9
		RED	2650	0.19	0	10		40	0	6.32					
				0.00	25	11		5	25		4	5.5	6.40	0.20	13.2
				0.00	50	11		30	25	6.25	9	7.0	6.30	0.24	19.B
			÷	0.00	121	12		41	71	5.69	14	6.4	6.30	0.24	19.6
				0.90	170	13		30	49	5.20	19	7.5	6.30	0.27	22.4
				0.00	200	14		0	30	4.9B	23	8.3	6.40	0.27	23.9
				0.00	245	14		45	45	4.60	31	8.3	6.30	0.31	26.5
		BLUE	2590	0.19	0	10		40	0	6.41					
				0.00	29	11		9	29		5	5.9	6.20	0.24	14,1
				0.00	50	11		30	21	5.90	10	5.9	6.20	0.27	15.9
				0.00	121	12		41	71	5.21	15	6.6	6.10	0.25	20.8
				0.00	170	13		30	49	4.72	20	7.0	6.10	0.25	23.9
				0.00	200	14		0	30	4.50	24	7.5	6.20	0.29	25.6
				0.00	245	14		45	45	2.74	32	7.8	6.10	0.27	27.9

# BIDMONINTDRIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SDNE stations)

STATION	DATE	CORE NO.	CDRE Vol (ML)	CORE H20 HE16HT (N)	TINE SUN (MIN)	tii Sai Hr	IE DF IPLE MIN	DELTA (min)	D0 (MG/1)	AA VIAL ND.	NH4 (uH-N)	N03+N02 (uH-N)	DIP (um-P)	SI (OH) (um-si
BU.VISTA	6-MAY-85	BLANK		0.00	0		25	0	8.30	25	0.5	1.60	0.89	27.2
				0.00	45	15	10	45	8.40	33	0.7	1.50	1.15	26.5
	•			0.00	75	15	40	30	8.41	37	0.9	1.40	0.94	24.7
				0.00	105	16	10	30	8.32	41	1.3	1.40	1.03	25.8
				0.00	135	16	40	30	8.22	45	0.6	1.50	1.05	22.5
				0.00	205	17	50	. 70	8.15	50	0.6	1.50	0.83	24.8
		GREEN	3022	0.22	0	14	25	0		26	1.9	1.70	1.95	30.0
				0.00	45	15	10	45	7.65	34	1.1	1.80	1.02	29.0
				0.00	75	15	40	30	7.40	38	1.3	2.10	1.17	33.9
				0.00	105	16	10	30	7.22	42	2.3	1.90	2.37	30.4
				0.00	135	16	40	30	7.14	46	1.8	2.10	1.15	30.7
				0.00	205	17	50	70	5.70	51	2.4	2.10	1.32	31.2
		RED	2510	0.18	0	14	25	0		27	0.9	1.50	0.92	28.4
				0.00	45	15	10	45	7.15	35	1.3	1.70	1.26	30.4
				0.00	75	15	40	30	6.80	39	2.4	2.10	1.06	30.3
				0.00	105	16	10	30	6.70	43	2.0	2.00	1.02	31.2
				0.00	135	16	40	30	6.58	47	2.5	1.80	1.27	31.6
·				0.00	205	17	50	70	6.21	52	2.7	2.20	1.21	33.2
		BLUE	2422	0.17	0	14	25	0		28	1.7	2.40	1.38	31.7
				0.00	45	15	10	43	7.60	36	3.2	2.30	2.33	34.1
				0.00	75	15	40	30	7.30	40	6.6	2.50	2.75	36.5
				0.00	105	16	10	30	6.72	. 44	3.0	2.40	1.46	34.4
				0.00	135	16	40	30	6.80	48	3.9	2.30	1.46	35.1
				0.00	205	17	5(	70	6.20	53	4.7	3.00	1.48	43.2

# BIDMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SDNE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SDNE stations)

STATION	DATE	CORE NO.	CDRE VDL (ML)	CORE H2D Height (M)	TINE SUM (HIN)	TIM Sam Hr	E DF Ple Min	DELTA (min)	D0 (M6/1)	AA VIAL ND.	NH4 (uH-N)	NO3+NO2 (um-n)	DIP (uM-P)	SI (DH) 4 (uM-SI)
HORN PT.	 7-MAY-85	BLANK		0.00	0	12	 i	6 (	7.21	107	2.9	6.10	0.34	2.7
				0.00	28	12	4	4 28	7.58	111	2.5	6.40	0.37	2.7
	λ.			0.00	59	13	1	5 31	7.30	115	2.5	6.10	0.14	2.7
	No. 1			0.00	B9	13	4	5 3(	7.43	119	2.7	6.30	0.28	5.7
				0.00	124	14	2	0 35	5 7.56	123	2.7	6.20	0.28	2.6
				0.00	174	15	1	0 50	7.58	127	2.9	6.40	0.34	4.7
		GREEN	2350	0.17	0	12	i	6 (	) 7.5B	108	3.4	5.90	0.41	6.9
				0.00	28	12	4	4 2	3 7.40	112	3.9	5.80	0.34	9.4
				0.00	59	13	1	5 3:	7.10	116	4.4	5.70	0.33	10.8
				0.00	89	13	4	5 3	6.75	120	5.1	5.70	0.22	12.6
				0.00	124	14		0 3	5 6.48	124	6.0	5.70	0.65	18.2
				0.00	174	15	1	0 5	6.01	128	6.7	5.50	0.32	19.3
		RED	2150	0.15	0	12	1	6	0 7.19	109	3.5	5.90	0.31	9.7
				0.00	28	12	1	4 2	B 5.90	113	4.0	5.90	0.3B	10.8
				0.00	59	13	1	5 3	1 6.58	117	4.7	5.70	0.36	12.9
				0.00	89	13	i.	5 3	0 6.30	121	5.1	5.70	0.41	15.6
				0.00	124	14		20 3	5 5.97	125	5.5	6.00	0.41	17.0
				0.00	174	15		0 5	0 5.50	129	6.7	5.60	0.58	21.0
		BLUE	2352	0.17	0	12		6	0 7.88	110	3.5	6.10	0.4B	8.5
				0.00	28	12		4 2	8 7.75	114	4.2	6.20	0.49	9.8
				0.00	59	13	1	5 3	1 7.50	119	4.5	5.80	0.53	14.1
				0.00	89	13		5 3	0 7.25	122	5.1	5.80	0.50	15.5
				0.00	124	14		20 3	5 6.92	126	5.9	5.70	0.58	17.7
				0.00	174	15		10 5	0 6.50	130	) 7.(	5.60	0.55	5 21.1

### BIDMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SDNE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SDNE stations)

STATION	DATE	CORE NO.	CDRE Vol (ML)	CDRE H20 HEIGHT (M)	TIME SUM (MIN)	TIME I SAMPLI HR N	IF : :N	DELTA (min)	DO (MG/1)	AA VIAL Nd.	NH4 (uM-N)	NO3+ND2 (un-N)	DIP (uM-P)	SI (DH) (uH-SI
WIND.HIL	7-MAY-85	BLANK		0.00	0	8	40	0	6.86	81	1.7	24.90	0.6B	8.1
				0.00	30	9	10	30	6.90	85	1.4	24.80	0.70	8.3
	•			0.00	70	9	50	40	7.02	90	1.8	24.60	0.72	12.2
				0.00	. 100	10	20	30	6.99	94	1.3	24.60	0.65	14.1
				0.00	130	10	50	30	7.06	9B	1.4	24.60	0.68	8.4
				0.00	185	11	45	55		103	2.2	24.90	0.68	8.0
		GEEEN	2884	0.21	0	8	40	0	7.16	82	1.2	24.00	0.70	9.5
				0.00	30	9	10	30	6.69	86	2.5	23.80	0.64	11.3
				0.00	70	9	50	40	6.15	91	1.6	24.60	0.66	12.1
				0.00	100	10	20	30	5.75	95	1.7	24.20	0.82	13.0
				0.00	130	10	50	30	5.44	99	1.8	24.00	0.79	14.6
			·	0.00	185	11	45	55	4.90	104	2.1	24.20	0.86	17.7
		RED	2542	0.18	0	8	40	0	7.05	83	1.7	24.00	1.29	10.6
				0.00	30	9	10	30	6.52	87	5.2	23.60	0.73	11.9
				0.00	70	9	50	40	5.88	92	1.5	23.80	0.79	20.4
				0.00	100	10	20	30	5.43	96	1.8	23.70	0.81	16.8
				0.00	130	10	50	) 30	5.19	100	1.9	23.70	0.B3	15.4
·				0.00	185	11	43	5 55	4.32	105	2.1	24.00	0.86	21.9
	•	BLUE	2B00	0.20	0	B	4(	) 0	7.19	84	i.4	26.30	0.77	8.7
				0.00	30	9	1(	) 30	6.58	88	3 1.6	24.20	V.67	11.6
				0.00	70	9	5(	) 40	5.90	93	3.2	24.70	0.80	) 14.1
				0.00	100	10	20	) 30	5.49	97	2.2	24.70	0.76	15.7
				0.00	130	10	5(	) 30	5.21	101	2.5	5 25.10	0.87	16.2
				0.00	185	11	4	5 55	4.48	106	3.0	25.40	0.89	18.4

#### BIDMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE ND.	CORE Vol (ML)	CORE H20 HEIGHT (M)	TINE SUN (MIN)	TINE SAMF HR	E DF Ple Min	1	DELTA (min)	D0 (M6/1)	AA VIAL ND.	NH4 (uH-N)	ND3+ND2 (uH-N)	DIP (um-P)	SI (DH) (uM-SI)
RAG.PT	9-NAY-85	BLANK		0.00	0	9		0	0	4.21	211	8.0	5.60	0.19	10.2
				0.00	50	9		50	50	4.40	215	8.1	6.70	0.21	10.2
	Å.			0.00	100	10		40	50	4.48	219	7.8	5.50	0.20	12.1
	i. Sa			0.00	. 160	11		40	60	4.62	223	8.2	5.70	0.27	10.7
	· .			0.00	227	12		47	67	4.40	237	7.5	6.10	0.18	10.9
				0.00	280	13		40	53	3.85	245	B.0	5.80	0.20	14.4
		GREEN	2650	0.19	0	9		0	0	4.65	212	10.0	5.30	0.43	13.1
				0.00	50	9		50	50	4.35	216	12.4	5.40	0.59	21.9
				0.90	100	10		40	50	3.63	220	15.2	4.70	0.60	20.0
				0.00	160	11		40	60	3.37	225	17.3	4.70	0.96	21.1
				0.00	227	12		47	67	2.82	238	19.9	4.00	0.80	23.8
				0.00	280	13		40	53	2.40	246	21.7	3.60	1.07	26.0
		RED	2700	0.19	0	9		0	0	3.80	213	9.0	5.60	0.29	11.9
				0.00	50	9		50	50	3.60	217	9.9	5.60	0.22	15.8
				0.00	100	10		40	50	3.33	221	11.2	5.10	0.27	14.9
				0.00	160	11		40	60	3.06	226	12.4	4.90	0.24	16.0
				0.00	227	12		47	67	2.72	239	14.7	4.50	0.54	18.2
				0.00	280	13		40	53	2.50	247	15.5	4.30	0.41	20.8
		BLUE	2920	0.21	0	9		0	0	3.62	214	10.1	5.30	0.33	12.7
				0.00	50	9		50	50	3.38	218	11.4	5.10	0.48	19.0
				0.00	100	10		40	50	3.04	222	13.4	4.80	0.55	18.2
				0.00	160	11		40	60	2.74	228	14.8	4.60	0.51	21.5
				0.00	227	12		47	67	2.35	240	16.4	4.20	0.77	22.8
				0.00	280	13		40	53	2.08	248	17.7	4.00	0.75	i 25.2

#### BIOMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CDRE ND.	CORE Vol (ML)	CORE H20 Height (N)	TINE Sum (MIN)	TI SAN HR	IE OF IPLE Min	DELTA (min)	DD (M6/1)	AA VIAL ND.	NH4 (uM-N)	N03+N02 (un-n)	DIP (uM-P)	SI (DH) (uH-SI
MD.PT	9-NAY-85	BLANK	<b>der der Op an bis die der</b>	0.00	0	12	5	0	6.98	229	5.3	42.90	0.85	28.4
				0.00	30	12	35	30	7.04	233	5.1	42.80	0.77	29.1
	•			0.00	65	13	10	35	6.48	241	5.0	42.70	0.75	29.9
				0.00	. 115	14	0	50	6.15	249	5.4	43.30	0.86	28.8
				0.00	145	14	30	30	6.30	253	5.7	42.90	2.03	35.5
				0.00	205	15	30	60	6.20	257	6.2	42.50	0.80	30.3
		<b>GREEN</b>	2075	0.15	0	12	5	0	6.90	230	5.3	42.60	0.85	31.3
				0.00	30	12	35	30	6.75	234	5.5	42.70	0.82	29.8
				0.00	65	13	10	35	6.54	242	7.0	42.40	1.14	33.7
	•			0.00	115	14	0	50	6.32	250	6.4	42.60	0.95	32.5
				0.00	145	14	30	30	6.15	254	7.0	42.50	0.94	40.2
				0.00	205	15	30	60	5.90	258	· 7.9	41.90	1.57	42.3
		RED	2750	0.20	0	12	5	0	6.40	231	5.4	42.40	0.87	31.1
				0.00	30	12	35	30	6.30	235	6.9	42.30	0.82	31.6
				0.00	65	13	10	35	5.95	243	6.5	42.00	0.92	30.3
				0.00	115	14	0	50	5.75	251	7.0	42.00	0.89	34.7
				0.00	145	14	30	30	5.60	255	10.4	41.90	2.75	42.1
·				0.00	205	15	30	60	5.30	259	7.4	41.80	0,89	35.2
		BLUE	2640	0.19	0	12	5	0	6.41	232	6.3	42.70	0.82	32.6
				0.00	30	12	35	30	6.28	236	7.0	42.40	1.57	34.1
				0.00	65	13	10	35	6.10	244	6.9	42.70	0.93	31.4
				0.00	115	14	0	50	5.87	252	7.9	42.60	0.90	33.2
				0.00	145	14	30	30	5.69	256	8.6	42.20	2.13	39.1
				0.00	205	15	30	60	5.41	260	8.7	42.10	0.88	34.8

#### BIDMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcoses at SONE stations)

STATION	DATE	CORE NO.	CDRE VDL (ML)	CORE H2D HEIGHT (M)	TINE SUN (MIN)	tii Sai HR	IE DF IPLE Min	DELTA (min)	DO (MG/1)	AA VIAL ND.	NH4 (uH-N)	ND3+ND2 (um-N)	DIP (uM-P)	SI (OH) (uM-SI
PT.ND.PT	8-NAY-85	BLANK		0.00	0	18	1	0 0	6.20	185	6.7	8.50	0.19	8.0
				0.00	30	18	4	0 30	6.20	189	6.6	8.20	0.17	8.3
	Č.,			0.00	80	19	3	0 50	6.25	193	6.2	8.70	0.32	7.9
	. And			0.00	130	20	2	0 50	6.30	197	7.0	8.30	0.16	7.8
	•			0.00	1B0	21	1	0 50	6.40	201	6.6	8.20	0.17	8.2
				0.00	230	22		0 50	6.40	205	6.1	8.40	0.28	8.0
		GREEN	2850	0.21	0	18	1	0 0	5.85	186	6.9	7.80	0.18	9.1
				0.00	30	18	1	0 30	5.82	190	7.7	7.50	0.19	10.7
				0.00	80	19		0 50	5.70	194	8.6	7.50	0.24	12.2
				0.00	130	20	2	0 50	5.52	198	9.8	7.30	0.51	16.2
				0.00	180	21	1	0 50	5.35	202	9.9	7.10	0.20	16.2
				0.00	230	22		0 50	5.20	206	10.6	7.10	0.56	18.0
		RED	2830	0.20	0	18		0 0	5.88	187	7.8	B.00	0.14	12.5
				0.00	30	18	4	0 30	5.76	191	7.5	8.20	0.14	10.1
		•		0.00	80	19		0 50	5.59	195	<b>B.</b> 7	7.80	0.18	13.5
				0.00	130	20		0 50	5.40	199	9.1	7.50	0.20	14.3
				0.00	180	21		0 50	5.20	203	9.9	7.50	0.20	16.4
				0.00	230	22		0 50	5.00	207	11.4	7.40	0.20	17.6
		BLUE	2903	0.21	0	18	:	.0 0	6.48	198	7.0	8.40	0.13	9.5
				0.00	30	18		10 30	6.31	192	7.5	7.90	0.15	9.9
				0.00	80	19		50	6.21	196	7.6	8.00	0.17	11.7
				0.00	130	20		20 50	6.08	200	7.9	7.80	0.19	15.3
				0.00	180	21		0 50	5.90	204	8.0	7.60	0.16	14.0
				0.00	230	22		0 50	5.80	208	6.5	7.50	0.20	14.8

# BIOMONINTORIN PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE ND.	CDRE Vol (ML)	CORE H20 HEIGHT (M)	TIME Sum (MIN)	TI Sa Hr	ME DF Mple Min	DELTA (min)	DD (M6/1)	AA VIAL ND.	- NH4 (uM-N)	ND3+ND2 (un-N)	DIP (uM-P)	SI (OH) (uH-SI
R-64	6-MAY-85	BLANK		0.00	0	19	1	) 0	5.50	55	5.4	9.50	0.14	5.4
				0.00	30	19	4	) 30	5.57	59	5.9	8.40	0.10	4.8
				0.00	60	20	1	0 30	5.60	63	6.0	9.20	0.10	5.5
				0.00	90	20	4	D 30	5.6B	67	5.6	9.00	0.16	4.1
				0.00	120	21	- 1	0 30	4.41	71	5.9	9.40	0.16	4.8
				0.00	130	21	2	0 10	5.67					
				0.00	180	22	1	0 50	5.79	75	6.0	9.30	0.12	4.7
		GREEN	2842	0.20	0	19	1	0 0	5.67	56	6.2	9.10	0.10	7.5
				0.00	30	19	4	0 30	5.50	60	6.4	7.10	0.12	6.6
				0.00	60	20	1	0 30	5.50	64	6.9	9.30	0.21	8.6
				0.00	90	20	4	0 30	5.30	<b>6</b> B	6.7	9.30	0.20	8.3
				0.00	120	21	1	0 30	5.25	72	7.6	8.80	0.10	8.4
				0.00	180	22	1	0 60	5.02	76	8.3	8.60	0.10	10.3
		RED	2701	0.19	0	19	1	0 0	7.11	57	8.2	9.60	0.18	9.2
				0.00	30	19	4	0 30	6.55	61	8.3	9.20	0.17	10.2
				0.00	60	20	1	0 30	6.50	65	8.2	9.00	0.17	10.3
				0.00	90	20	4	0 30	6.50	69	9.8	8.90	0.19	24.3
				0.00	120	21	1	0 30	6.50	73	9.9	9.00	0.25	14.4
	•			0.00	180	22	1	0 60	6.40	77	11.1	8.30	0.16	16.9
		BLUE	2134	0.15	0	19	1	0 0	6.20	58	6.8	9.10	0.11	7.7
				0.00	30	19	4	0 30	6.10	62	7.8	9.10	0.13	8.9
				0.00	60	20	1	0 30	5.80	66	8.1	9.10	0.14	13.0
				0.00	90	20	4	0 30	5.80	70	9.0	B.B0	0.16	10.7
				0.00	120	21	1	0 30	5.80	74	9.5	8.70	0.13	13.0
				0.00	180	22	1	0 60	5.60	78	11.4	8.70	0.17	15.3

# BIOMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE ND.	CORE Vol (ML)	CORE H20 HEIGHT (M)	TIME SUM (MIN)	TIN SAM HR	E DF IPLE Min	DEL (ej	.TA .n)	DD (MG/1)	AA VIAL ND.	NH4 (uM-N)	ND3+ND2 (um-n)	DIP (um-P)	SI (OH) (uM-SI
R-78	7-HAY-85	BLANK		0.00	0	18		55	0	5.51	133	4.9	13.60	0.19	6.7
				0.00	30	19		25	30	5.53	137	4.8	13.40	0.16	2.6
				0.00	65	20		0	35	5.4B	141	5.9	14.10	0.72	3.5
	- An			0.00	100	20		35	35	5.53	145	5.1	13.60	0.21	2.6
				0.00	130	21		5	30		150	4.8	13.BO	0.19	2.9
				0.00	190	22		5	60		153	4.7	13.70	0.17	3.1
		GREEN	2177	0.16	0	18		55	0	6.35	134	6.0	13.20	0.27	4.9
				0.00	30	19		25	30	6.18	138	6.4	13.40	0.24	5.9
				0.00	65	20		0	35	5.59	142	6.9	13.50	0.27	5.7
				0.00	100	20		35	35	5.56	146	7.6	13.10	0.24	5.1
				0.00	130	21		5	30	5.71	149	9.5	13.00	0.27	7.0
				0.00	190	22		5	60	5.30	154	9.3	12.20	0.19	7.7
		RED	2288	0.15	0	18		55	0	6.31	135	5.3	13.50	0.21	B.7
				0.00	30	19		25	30	6.20	139	5.9	13.30	0.19	3.9
				0.00	65	20		0	-35	6.08	143	6.8	13.10	0.17	3.9
				0.00	100	20		35	35	5.90	147	6.9	13.20	0.26	4.3
				0.00	130	21		5	30	5.75	151	7.9	12.B0	0.22	7.9
				0.00	190	22		5	60	5.51	155	8.0	12.80	0.21	5.4
		PLUE	1987	0.14	0	18		55	0	6.02	136	6.0	13.30	0.23	5,1
				0.00	30	19		25	30	5.88	140	7.0	13.50	0.36	5.3
				0.00	65	20		0	35	5.66	144	8.0	12.90	0.24	8.1
				0.00	100	20		35	35	5.50	148	8.8	12.70	0.22	6.9
				0.00	130	21		5	30	5.38	152	9.7	12.60	0.24	B.0
				0.00	190	22		5	60	5.13	156	10.9	12.60	0.21	10.6

#### BIDMONINTORIN PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SDNE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE ND.	CDRE Vol (ML)	CDRE H2D Height (M)	TIME SUM (MIN)	TINI SAN	E DF Ple Min	DELTA (min)	D0 (M6/1)	AA VIAL ND.	NH4 (uM-N)	N03+N02 (um-N)	DIP (um-P)	SI (OH) (uH-SI
STIL.PD	8-MAY-85	BLANK		0.00	0	B	45	0	8.50	159	5.9	51.80	0.20	5.6
	•			0.00	30	9	15	30	8.40	163	5.8	57.80	0.31	9.9
				0.00	-60	9	45	30	B.32	167	5.7	57.10	0.29	7.9
				0.00	90	10	15	30	8.32	171	4.5	57.40	0.25	6.9
				0.00	120	10	45	30	8.40	175	5.4	57.30	0.34	7.0
				0.00	190	11	55	70	8.40	179	4.5	57.40	0.30	7.3
		GREEN	2725	0.20	0	8	45	i 0	8.20	160	5.4	55.20	0.31	16.0
				0.00	30	9	1	i 30	8.10	164	6.4	56.00	0.39	8.0
	•			0.00	60	9	4	i 30	7.82	168	7.3	49.50	0.41	8.7
				0.00	90	10	1	i 30	7.42	172	7.2	57.00	0.49	12.6
				0.00	120	10	4	5 30	6.92	176	9.7	56.00	0.55	10.6
				0.00	190	11	5	5 70	6.09	1B0	12.8	55.50	1.14	14.4
		RED	2550	0.18	0	8	4	5 O	8.55	161	4.7	57.10	0.26	7.9
				0.00	30	9	1	5 30	8.30	165	4.6	56.00	0.24	9.9
				0.00	· 60	9	4	5 30	8.08	169	5.0	56.30	0.26	9.0
				0.00	90	10	1	5 30	7.65	173	5.1	55.50	0.27	12.1
				0.00	120	10	4	i 30	7.55	177	5.5	55.40	0.27	11.3
				0.00	190	11	5	5 70	7.05	181	5.5	55.30	0.29	14.6
		BLUE	2450	0_1B	0	8	4	5 0	8.64	162	4,9	56.60	0.22	8.9
				0.00	30	9	1	5 30	8.40	166	4,9	55.70	0.27	8.2
				0.00	60	9	4	5 30	8.21	170	4.9	55.80	0.25	10.8
				0.00	90	10	1	5 30	8.00	174	5.6	55.10	0.34	10.9
				0.00	120	10	4	5 30	7.49	178	5.8	55.20	0.28	10.4
				0.00	190	11	5	5 70	7.39	182	5.5	54.50	0.38	11.7

#### BIOMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE ND.	CDRE Vol (ML)	CORE H20 HEIGHT (M)	TIME SUM (MIN)	TIN SAN HR	E DF Ple Min	DELT (min	A ) (1	D0 N6/1)	AA VIAL ND.	. NH4 (uM-N)	ND3+ND2 (uN-N)	DIP (uH-P)	SI (OH) 4 (uH-SI)
SONE 4		~~~~~~													
ST.LEO	25-JUNE-85	BLANK		0.00	0	12	4	0	0 3	3.86	103	8.7	1.73	0.19	63.0
	Å			0.00	30	13	1	0 3	0	3.98	110	8.8	1.89	0.26	59.3
	in the second			0.00	55	13		5 2	5	4.03	114	B.7	1.87	0.21	58.7
				0.00	90	14	1	0 3	5	4.08	121	8.7	1.94	0.25	57.6
				0.00	115	14		5 2	!5 ·	4.16	125	6.8	1.81	0.37	57.0
				0.00	155	15	1	5 4	0	4.28	129	9.0	1.91	0.23	57.6
		RED	2725	0.20	0	12	4	10	0	3.60	104	9.3	2.22	0.25	61.8
				0.00	30	13		10 3	50	3.25	111	9.6	2.68	0.27	62.5
	· · ·			0.00	55	13		35 2	25	2.82	115	9.6	2.45	0.25	63.0
				0.00	90	14		10 3	55	2.57	122	9.6	2.64	0.39	63.7
				0.00	115	14	•	35 2	25	2.27	126	10.6	2.88	0.61	65.2
				0.00	155	15		15 4	10	1.95	130	10.3	3.42	0.46	67.7
		GREEN	2850	0.21	0	12		40	0	4.00	105	9.1	2.16	0.19	60.6
				0.00	30	13		10	30	3.64	112	9.4	2.52	0.32	61.8
				0.00	55	13		35 3	25	3.35	116	9.4	2.70	0.35	62.8
				0.00	90	14		10	35	3.07	123	9.5	2.84	0.33	63.3
				0.00	115	14		35 3	25	2.B0	127	9.B	3.30	0.35	65.7
				0.00	155	15		15	40	2.53	131	9.8	3.57	0.32	65.4
		BLUE	2650	0.19	0	12		40	0	3.62	106	9.5	2.23	0.47	65.2
				0.00	30	13	,	10	30	3.27	113	9.2	2.35	0.32	63.1
				0.00	55	13		35	25	3.04	117	9.3	2.55	0.35	63.6
				0.00	90	14		10	35	2.75	124	9,1	2.89	0.37	63.7
				0.00	) 115	14		35	25	2.44	128	10.6	2.92	0.83	66.2
				0.00	) 155	15		15	40	2.12	132	10.8	5 3.28	0.39	67.0

# BIOMONINTORIN PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

ing Series Series Series Series

STATION	DATE	CDRE ND.	CORE VDL (ML)	CORE H2D HE16HT (M)	TINE SUM (MIN)	time Samp Hr	OF Le Min	DELTA (min)	D0 (M6/1)	AA VIAL ND.	NH4 (uM-N)	ND3+ND2 (um-N)	DIP (um-P)	SI (DH) (um-si
BU. VISTA	25-JUNE-85	BLANK		0.00	0	10	55	0	4.27	85	1.5	0.99	1.41	92.0
				0.00	30	11	25	30	4.33	90	1.4	0.30	1.72	94.0
	•			0.00	60	11	55	30	4.40	- 95	1.7	0.31	1.85	89.0
				0.00	90	12	25	30	4.47	99	1.2	0.73	1.45	B9.0
		RED	2650	0.19	0	10	55	0	4.65	86	1.1	0.70	1.61	93.0
				0.00	30	11	25	30	4.54	91	2.0	0.32	2.09	92.0
•				0.00	60	11	55	30	4.45	96	1.9	0.53	1.59	93.0
				0.00	90	12	25	30	4.40	100	2.4	0.49	1.62	92.0
				0.00	120	12	55	30	4.32	107	4.3	0.46	2.39	94.0
				0.00	175	13	50	55	4.12	110	4.4	1.11	1.73	86.0
		GREEN	2710	0.19	0	10	55	0	4.57	87	1.0	0.23	1.95	i 91.0
				0.00	30	11	25	i 30	4.48	92	1.3	0.45	1.76	96.0
				0.00	60	11	55	30	4.38	97	1.7	0.35	1.60	) ⁻ 92.0
				0.00	90	12	25	i 30	4.30	101	2.5	0.70	1.71	94.0
				0.00	120	12	55	30	4.1B	108	2.9	0.57	1.70	90.0
				0.00	175	13	5(	) 55	3.92	119	4.5	0.49	1.71	. 90.0
		BLUE	2700	0.19	0	10	5	j 0	4.30	88	1.9	0.58	1.67	/ 96.0
	•			0.00	30	11	2	i 30	4.17	93	2.6	0.61	1.71	94.0
				0.00	60	11	5:	i 30	4.00	98	3.9	0.65	2.10	94.0
				0.00	90	12	2	5 30	3.85	102	4.8	0.49	1.92	2 95.0
				0.00	120	12	5	5 30	3.70	109	5.9	0.54	1.82	2 97.0
				0.00	175	13	5	) 55	3.44	120	) 7,4	0.72	2.02	2 93.0

.

# BIDMONINTORIN PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SDNE) SEDFLUX (Nutrient and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE ND.	CORE Vol (ML)	CORE H2D HEIGHT (M)	TINE SUM (NIN)	tii Sai Hr	E OF IPLE Min	DELTA (min)	DO (M6/1)	AA VIAL ND.	NH4 (uM-N)	N03+N02 (uN-N)	DIP {uM-P}	SI (OH) (uM-SI	
HORN PT.	26-JUNE-85	BLANK		0.00	0	9	4(	) 0	5.61	161	3.2	2.04	0.41	52.7	
				0.00	30	10	- 1	) 30	5.62	165	3.8	1.74	0.40	53.0	
	;			0.00	50	10	30	) 20	5.67	169	3.2	1.72	0.46	51.5	
	New York			0.00	.70	10	50	) 20	5.69	173	3.2	2.16	0.32	51.6	
				0.00	90	11	1	) 20	5.73	177	3.3	1.92	0.36	52.8	
	•			0.00	130	11	5	) 40	5.75	181	3.2	1.71	0.32	51.2	
		RED	2875	0.21	0	9	4	) 0	4.90	162	3.8	2.29	0.39	57.0	
				0.00	30	10	1	) 30	4.60	166	4.8	2.55	0.44	58.1	
		·		0.00	50	10	3	) 20	4.35	170	5.0	3.30	0.40	62.2	
				0.00	70	10	5	) 20	4.14	174	5.2	3.12	0.47	61.0	
				0.00	90	11	1	20	3.90	178	5.8	3.30	0.39	61.4	
				0.00	130	11	5	0 40	3.47	182	6.6	3.83	0.66	64.3	
		GREEN	3035	0.22	0	9	4	0 0	5.20	163	3.8	2.06	0.61	57.0	
				0.00	30	10	1	D 30	4.78	167	4.6	2.40	0.47	57.5	
				0.00	50	10	3	0 20	4.50	171	4.6	2.46	0.53	58.9	
				0.00	70	10	5	0 20	4.20	175	5.2	2.79	0.60	59.4	
				0.00	90	11	1	0 20	3.95	179	5.8	3.3B	0.65	60.8	
				0.00	130	11	5	0 40	3.38	183	6.6	3.85	0.61	62.3	
		BLUE	2940	0.21	0	9	4	0 0	4.92	164	5.1	2.15	0.54	59.5	
				0.00	30	16	1	0 50	4.48	160	- 5.0	2.70	0.32	57.4	
				0.00	50	10	3	0 20	4.22	172	5.6	2.56	0.31	59.6	
				0.00	70	10	5	0 20	3.98	176	5.9	3.00	0.41	62.7	
				0.00	90	11	i	0 20	3.70	180	6.1	3.11	0.44	62.2	
				0.00	130	11	5	0 40	3.22	184	7.4	3.29	0.42	64.5	
TATION	DATE	CORE ND.	CORE VDL (ML)	CORE H2D HEIGHT (N)	TIME SUM (MIN)	TIN Sam Hr	E OF Ple Min		)ELTA (min)	D0 (M6/1)	AA VIAL ND.	NH4 (uM-N)	NO3+NO2 (uH-N)	DIP (uM-P)	SI (OH) (um-si
--------	------------	-------------	---------------------	---------------------------	----------------------	------------------	--------------------	----	----------------	--------------	----------------	---------------	-------------------	---------------	-------------------
RAG.PT	24-JUNE-85	BLANK		0.00	0	11		40	0	0.23	3	18.8	0.45	1.49	41.9
	-			0.00	30	12		10	30	0.42	7	18.4	0.25	1.52	42.2
				0.00	60	12	,	40	30	0.60	11	18.6	0.32	1.48	42.0
				0.00	100	13		20	40	0.68	15	19.0	0.46	1.66	42.6
				0.00	160	14		20	60	0.81	19	18.4	0.51	1.3B	43.8
				0.00	285	16		25	125	1.31	33	17.5	0.26	1.11	41.8
		RED	3215	0.23	0	11		40	0	0.30	4	19.6	0.32	1.73	42.8
				0.00	30	12		10	30	0.34	8	20.5	0.14	1.71	44.2
				0.00	60	12		40	- 30	0.36	12	21.4	0.17	1.88	45.5
				0.00	100	13		20	40	0.35	16	21.9	0.25	1.99	46.3
				0.00	160	14		20	60	0.29	20	22.9	0.25	2.05	47.1
				0.00	285	16		25	125	0.19	34	25.1	0.52	2.25	50.8
		GREEN	3270	0.24	0	11		40	0	0.38	5	20.1	0.17	1.72	43.5
				0.00	30	12		10	30	0.46	9	21.1	0.25	1.83	44.6
				0.00	60	12		40	30	0.48	13	22.2	0.16	2.02	45.2
				0.00	100	13		20	40	0.46	17	23.1	0.26	2.32	48.6
				0.00	160	14		20	60	0.37	21	24.7	0.58	2.23	48.3
				0.00	285	16		25	125	0.22	35	27.7	0.22	2.55	50.9
		BLUE	3255	0.23	0	11		40	0	0.16	6	20.4	0.33	1.71	43.B
				0.00	30	12		10	3ù	0.25	10	21.7	0.25	1.95	45.5
				0.00	60	12		40	30	0.26	14	22.9	0.26	1.91	45.6
				0.00	100	13		20	40	0.27	18	24.2	0.35	2.04	47.3
				0.00	160	14		20	60	0.24	22	25.8	0.11	2.15	4B.1
				0.00	285	16		25	125	0.07	36	29.1	0.20	2.44	50.8

STATION	DATE	CORE No.	CORE Vol (ML)	CORE H2D Height (M)	TINE SUN (MIN)	TIME Samp Hr	E DF Ple Min	DELTA (min)	D0 (M6/1)	AA VIAL ND.	NH4 (uM-N)	ND3+ND2 (uN-N)	DIP (um-P)	SI (DH) (uM-SI
MD.PT	4-JUNE-85	BLANK		0.00	0	15	35	 0	5.39	25	6.7	31.20	1.46	41.5
				0.00	30	16	5	30	5.56	29	4.9	31.10	1.38	39.1
	N			0.00	65	16	40	35	6.05	37	5.3	30.60	1.39	39.6
	l.e.			0.00	- 75	17	10	30	6.28	41	5.6	30.60	1.61	42.9
				0.00	125	17	40	30		45	5.1	30.70	1.47	39.2
				0.00	155	18	10	30	5.00	49	5.0	31.10	1.32	38.4
				0.00	235	19	30	80	5.21	55	5.1	31.60	1.37	40.9
		RED	2550	0.18	0	15	35	i 0	4.35	26	5.3	30.80	1.3B	42.1
				0.00	30	16	5	30	4.30	30	5.3	31.00	1.49	43.6
				0.00	65	16	4(	35	4.32	38	5.5	30.80	1.43	42.1
				0.00	<b>9</b> 5	17	10	30	4.30	42	5.7	29.00	1.35	48.5
				0.00	125	17	4(	30	4.30	46	6.1	31.20	1.46	42.7
				0.00	155	18	10	30	4.29	50	5.9	30.40	1.49	44.9
				0.00	235	19	3(	90	4.22	56	6.3	30.60	1.57	45.7
		GREEN	2780	0.20	0	15	35	; 0	4.55	27	4.9	30.60	1.27	43.0
				0.00	30	16	ļ	i 30	4.45	31	5.5	30.70	1.43	44.4
				0.00	65	16	4(	) 35	4.40	39	5.4	30.80	1.43	44.2
				0.00	95	17	1(	) 30	4.35	43	5.3	28.10	1.30	42.1
				0.00	125	17	4(	) 30	4.35	47	5.6	30.70	1.50	43.8
				0,00	155	18	10	) 30	4.30	51	6.1	30.50	1.37	45.4
				0.00	235	19	3(	) 80	4.15	57	5.9	30.20	1.51	46.2
		BLUE	2790	0.20	0	15	3	5 O	4.25	28	5.1	30.70	1.42	44.1
				0.00	30	16	ļ	i 30	4.20	32	5.3	30.70	1.54	44.8
				0.00	65	16	4	) 35	4.12	40	5.8	30.70	1.50	42.2
				0.00	95	17	1	) 30	4.09	44	6.0	30.70	1.61	40.7
				0.00	125	17	4	) 30	4.02	48	6.1	30.70	1.54	43.6
				0.00	155	18	1	) 30	3.98	52	6.2	2 30.40	1.59	44.2
				0.00	235	19	3	0 80	3.80	58	6.4	30.70	1.61	45.5

STATION	DATE	CORE ND.	CDRE VDL (ML)	CORE H2D HEIGHT (N)	TIME SUM (MIN)	T I SA HR	ME OF MPLE MIN		DELTA (min)	D0 (MG/1)	AA VIAL ND.	NH4 (uM-N)	ND3+ND2 (um-N)	DIP (uM-P)	SI (DH) (uM-SI
PT.NO.PT	24-JUNE-85	BLANK		0.00	0	20		25	0	1.19	59	12.7	1.13	1.48	39.6
• :	•			0.00	30	20		55	30	1.94	63	12.7	1.21	1.41	40.1
				0.00	76	21		41	46	2.19	67	13.1	1.86	1.38	40.0
				0.00	120	22		25	44	2.53	71	13.2	1.00	1.41	39.8
				0.00	165	23		10	45	2.70	75	13.8	1.58	1.43	39.7
				0.00	225	- 24		10	60	2.92	79	13.7	1.61	1.33	40.9
		RED	2900	0.21	0	20		25	0	2.10	60	13.4	1.14	0.47	42.6
				0.00	30	20		55	30	2.07	64	14.5	0.68	0.54	43.8
				0.00	75	21		40	45	1.95	68	16.5	0.78	0.80	53.2
				0.00	120	22		25	45	1.80	72	18.3	0.60	0.B7	48.B
				0.00	165	23		10	-45	1.60	76	19.9	0.95	1.05	58.4
				0.00	225	24		10	60	1.35	80	21.5	0.B4	1.13	63.7
		GREEN	2890	0.21	0	20		25	0	2.60	61	12.9	0.55	0.47	42.6
				0.00	30	20		55	30	2.31	65	13.7	0.94	0.57	44.0
				0.00	75	21		40	45	2.35	69	15.7	0.76	0.64	53.1
				0.00	120	22		25	45	2.34	73	16.7	1.62	0.93	48.8
				0.00	165	23		10	45	2.20	77	18.2	0.96	0.92	51.9
				0.00	225	24		10	60	1.95	81	19.8	0.77	0.96	57.6
		BLUE	3130	0.23	0	20		25	0	2.25	62	12.6	0.54	0.41	41.2
				0.00	30	20		55	30	2.30	66	13.2	0.58	0.47	43.0
				0.00	75	21		40	45	2.24	70	14.6	1.13	0.59	48.4
				0.00	120	22		25	45	2.15	74	16.6	0.83	0.64	49.5
				0.00	165	23		10	45	2.05	78	16.6	0.74	0.65	53.2
				0.00	225	24		10	60	1.97	82	18.3	0.71	0.BO	57.1

STATION	DATE	CORE NO.	CDRE Vol (ML)	CORE H20 HEIGHT (N)	TIME SUM (MIN)	TIM Sam Hr	E DF IPLE MIN	DELTA (min)	DO (M6/1)	AA VIAL ND.	NH4 (uH-N)	ND3+ND2 (uM-N)	DIP (uM-P)	SI (DH) (uM-SI
	25-JUNE-85	BLANK		0.00	0	18		5 0	0.43	135	24.0	0.90	0.42	46.0
				0.00	30	18	3	5 30	0.74	139	22.3	0.94	0.59	45.9
				0.00	60	19		5 30	0.83	143	22.3	1.24	0.61	45.9
	and the second sec			0.00	100	19	4	5 40	0.95	147	22.3	0.87	0.51	48.6
	Source.			0.00	160	20	4	5 60	1.12	151	23.4	1.27	0.92	46.0
				0.00	220	21	4	5 60	1.26	155	22.1	0.94	0.42	46.5
		RED	2780	0.20	0	18		5 0	0.82	136	22.5	0.89	0.66	50.7
				0.00	30	18	3	5 30	0.85	140	22.7	0.89	0.59	48.7
				0.00	60	19		5 30	0.85	144	23. 8	1.19	0.66	50.5
	•			0.00	100	19	4	5 40	0.77	148	25.2	1.49	0.87	52.2
				0.00	160	20	4	5 60	0.65	152	27.3	0.76	1.04	58.9
				0.00	220	21	4	5 60	0.55	156	29.0	0.55	1.27	61.8
		<b>GREEN</b>	2470	0.1B	0	1B		5 0	0.85	137	21.6	1.26	0.63	47.4
				0.00	30	18	3	5 30	0.78	141	24.0	0.80	0.92	50.8
				0.00	60	19		5 30	0.74	145	26.3	1.28	1.42	55.7
				0.00	100	19	4	5 40	0.64	149	28.5	0.99	1.70	58.8
				0.00	160	20	4	5 60	0.50	153	31.5	0.70	2.53	66.6
				0.00	220	21	1	5 60	0.47	157	33.E	0.74	3.00	69.3
		BLUE	2645	0.19	0	18		5 (	0.85	138	22.2	1.02	0.55	4B.0
				0.00	30	18		5 30	0.78	142	25.6	1.26	1.04	51.2
				0.00	60	19		5 30	0.97	146	25.2	0.65	1.30	54.5
				0.00	100	19	1	5 4(	) 0.75	150	26.5	i 0.62	1.70	58.2
				0.00	160	20	4	5 60	0.80	154	28.1	0.39	2.22	2 64.4
				0.00	220	21	4	15 60	0.70	158	3 28.8	0.49	2.67	67.9

STATION	DATE	CDRE ND.	CORE Vol (ML)	CORE H2D HEIGHT (M)	TINE SUM (MIN)	t) Si Hr	INE DF INPLE Min	DELTA (min)	D0 (M6/1)	AA VIAL NO.	NH4 (uM-N)	ND3+ND2 (uH-N)	DIP (uM-P)	SI (OH) / (uM-SI)
R-78	27-JUNE-85	BLANK		0.00	. 0	13	55	0	1.14	209	22.0	0.89	0.41	48.4
	•			0.00	40	14	35	40	1.21	213	21.9	1.01	0.50	47.4
				0.00	100	15	35	60	1.33	217	21.8	1.21	0.59	47.5
				0.00	160	16	35	60	1.51	221	22.2	0.87	0.49	47.4
				0.00	220	17	35	60	1.62	225	21.7	2.06	0.49	48.1
				0.00	280	18	35	i 60	1.78	_ 229	22.4	0.84	0.54	48.0
		RED	2050	0.15	0	13	55	0	1.23	210	24.3	0.89	0.65	51.4
				0.00	40	14	- 35	40	1.42	214	25.3	0.83	0.88	53.8
				0.00	100	15	35	60	1.59	218	26.3	0.57	0.76	58.8
				0.00	160	16	35	60	1.60	222	28.1	0.85	0.85	60.B
				0.00	220	17	35	60	1.64	226	28.7	1.45	0.92	63.6
				0.00	280	18	35	60	1.60	230	29.5	1.53	0.93	67.2
		GREEN	2520	0.1B	0	13	55	0	0.90	211	24.1	0.94	0.62	50.0
				0.00	40	14	-35	40	0.91	215	25.4	0.78	0.73	52.4
				0.00	100	15	35	60	0.86	219	26.7	0.62	0.76	54.7
				0.00	160	16	35	60	0.76	223	28.4	1.00	0.90	57.6
				0.00	220	17	35	60	0.68	227	29.6	1.36	0.95	59.9
				0.00	280	18	35	60	0.50	231	30.4	0.56	0.97	62.2
		BLUE	2500	0.18	0	13	55	0	0.45	212	24.0	0,78	0.51	49.1
				0.00	40	14	35	40	0.49	216	24.5	0.54	0.55	50.5
				0.00	100	15	35	60	0.48	220	24.0	0.69	0.59	51.1
				0.00	160	16	35	60	0.43	224	25.6	1.53	0.63	53.9
				0.00	220	17	35	60	0.40	228	25.9	1.04	0.59	55.0
				0.00	280	18	35	60	0.37	232	26.3	1.40	0.73	56.2

6

STATION	DATE	CORE NO.	CDRE VDL (ML)	CORE H20 HEIGHT (N)	TIME SUM (MIN)	ti Sa Hr	ME OF Mple Min	DELTA (min)	DO (MG/1)	AA VIAL ND.	NH4 (um-n)	N03+N02 (um-n)	DIP (uM-P)	SI (OH) 4 (uM-SI)
STIL.PD	26-JUNE-85	BLANK		0.00	0	18	20	0	5.61	187	5.i	38.40	0.51	38.B
				0.00	30	18	50	30	5.68	191	4.7	38.20	0.53	34.3
	ί.			0.00	60	19	20	30	5.70	195	4.9	3B.60	0.57	39.3
	lan lan			0.00	100	20	0	40	5.84	199	5.0	38.40	0.55	37.8
				0.00	155	20	55	55	5.90	203	4.9	38.30	0.51	36.7
		RED	2975	0.21	0	18	20	0	5.38	188	5.0	38.40	0.52	40.2
				0.00	30	18	50	30	5.25	192	5.0	38.30	0.56	38.8
				0.00	60	19	20	30	5.10	196	5.0	38.00	0.54	39.7
				0.00	100	20	0	40	4.90	200	5.1	38.00	0.56	41,7
				0.00	155	20	55	55	4.70	204	5.B	38.40	0.59	39.1
		GREEN	2900	0.21	0	18	20	0	5.06	189	5.1	38.30	0.53	40.3
				0.00	30	18	50	30	5.00	193	5.6	38.00	0.55	39.2
				0.00	60	19	20	30	4.85	197	6.0	38.00	0.57	41.3
				0.00	100	20	0	40	4.65	201	6.8	38.20	0.59	41.9
				0.00	155	20	55	55	4.48	205	6.5	38.10	0.55	41.2
		BLUE	3100	0.22	0	18	20	0	4.91	190	5.0	38.50	0.51	40.2
				0.00	30	18	50	30	4.92	194	4.8	38.40	0.53	39.5
				0.00	60	19	20	30	4.8B	198	4.9	38.60	0.93	39.4
				0.00	100	20	0	40	4.80	202	4.8	38.20	0.55	41.8
				0.00	155	2J	55	50	4.08	206	- 4.9	32.40	0.58	32.2

STATION	DATE	CDRE ND.	CORE VOL	CDRE H20 HEIGHT	TIME	T) Si	IME DF HPLE	DELTA TIME	DO (MC/1)	AA VIAL	NH4 (	NO3+ND2	DIP	SI (DH)4
			(AL7.	\n/ 	1#1117	nn 	п <b>ти</b>	(#187	(10/1/	RU.	(un-n/	(UN=M7.	(un-r /	
SONE 5														
ST.LED	22-AUG-8	5 BL		0.00	0	9	25	0	4.77	184	11.5	6.41	0.96	54.2
					60	10	25	60	4.B1	189	11.1	6.51	0.99	53.5
	-'''' Later				120	11	25	60	4.97	194	11.2	6.28	0.93	50.8
_					190	12	25	60	4.94	202	11.4	6.91	1.04	54.3
					240	13	25	60	4.95	210	10.6	7.63	0.92	51.7
					300	14	25	60	5.00	218	9.7	6.43	0.97	52.4
		6	3075	0.22	0	9	25	0	4.72	185	11.4	6.13	0.97	54.9
					60	10	25	60	4.60	187	11.9	6.53	1.00	55.9
					120	11	25	60	4.45	195	12.4	6.62	1.00	53.6
					180	12	25	60	4.30	203	12.6	6.58	0.96	54.6
					240	13	25	60	4.10	211	13.2	6.B3	0.98	57.1
					300	14	25	60	4.00	219	13.2	6.79	0.94	54.7
		R	2840	0.20	0	. 9	25	0	5.38	186	11.2	6.23	1.02	56.8
					60	10	25	60	5.20	190	12.3	6.34	1.02	55.2
					120	11	25	60	5.00	196	12.6	7.03	1.04	55.2
					180	12	25	60	4.82	204	13.2	6.76	0.97	54.2
					240	13	25	60	4.55	212	13.6	7.05	0.96	54.0
					300	14	25	60	4,40	220	13.6	6.80	0.94	42,7
		B	2825	0.20	0	9	25	0	5.02	187	· 11.2	6.47	1.04	56.ā
		-	•		60	10	25	60	4.98	191	12.5	6.40	0.98	56.7
					120	- 11	25	60	4.81	197	12.2	6.85	1.01	56.5
					180	12	25	60	4.50	205	13.0	7.28	1.00	55.7
					240	13	25	60	4.60	213	13.3	7.86	1.01	5B.7
					300	14	25	60	4.50	221	13.2	6.82	1.00	56.2

STATION	DATE	CORE NO.	CDRE Vol (ML)	CORE H20 HEIGHT (M)	TIME SUM (min)	T Si HR	IME DF AMPLE MIN	DELTA TIME (min)	D0 (M6/1)	AA VIAL ND.	NH4 (uM-N)	N03+N02 (um-N)	DIP (um-P)	SI (DH) 4 ) (um-SI)
BU. VISTA	22-AU6-85	BL			0	11	40	0	3.07	198	15.5	10.80	3.30	83.0
	•				60	12	40	60	3.17	206	16.0	10.B0	3.55	B5.0
					120	13	40	60	3.20	214	16.5	10.80	3.38	61.0
				÷ .	180	14	40	60	3.20	222	15.1	10,90	3,32	85.0
					240	15	40	60	3.20	226	14.9	10.90	3.42	85.0
					305	16	45	65	3.21	233	16.2	11.60	3.48	82.0
		6	3060	0.22	0	- 11	40	0	3.78	199	16.2	10.40	3.49	84.0
					60	12	. 40	60	3.6B	207	16.8	10.70	3.50	88.0
					120	13	40	60	3,58	215	17.8	10.70	3.40	79.0
					180	14	40	60	3.47	223	18.2	10.10	3.44	76.0
					240	15	40	60	3.32	227	19.0	10.00	3.41	86.0
					305	16	45	65	3.20	230	19.9	10.10	3.30	89.0
		R	2870	0.21	0	11	40	0	3.20	200	16.5	10.50	3.44	85.0
					60	12	40	60	3.09	208	18.2	10.50	3,58	80.0
					120	13	40	60	3.00	216	19.7	10.30	3.60	81.0
					180	14	40	60	2 <b>.8</b> 5	224	21.2	9.80	4.35	90.0
					240	15	40	60	2.70	228	21.9	10.80	4.04	91.0
	•				305	16	45	65	2.59	231	23.7	10.70	4,17	92.0
		B	<b>287</b> 0	0.21	D	11	40	Û	3.43	201	16.2	10.30	3.39	83.0
					60	12	40	60	3.30	209	16.9	10.70	3.53	83.0
					120	13	40	60	3.10	217	16.7	9.90	3.45	84.0
					180	14	40	60	2.90	225	19.9	10.30	3.50	84.0
					240	15	40	60	2.71	229	21.0	9.80	3.60	89.0
					305	16	45	65	. 2.59	232	22.6	9.70	3.56	87.0

CORE STATION DATE ND.	CORE VDL	CORE H20 HEIGHT	TIME	T) S/	INE OF WPLE	DELTA TIME	DO	AA VIAL	NH4	ND3+ND2	DIP	51 (OH) 4
	(ML)	(M)	(min)	HR	MIN	(min)	(MG/1)	ND.	(uH-N)	(uH-N)	(uH-P)	) (uM-SI)
HORN PT 21-AUG-85 BL			0	13	25	0	4.69	154	15.8	3.66	0.85	54.3
			60	14	25	60	4.87	162	14.3	3.28	0.67	56.2
			120	15	25	60	4.99	166	13.9	3.33	0.74	54.9
have a second			180	16	25	60	5.04	170	13.8	3.20	0.72	51.5
			240	17	25	60	5.17	174	13.5	3.36	0.72	55.1
			300	18	25	60	5.27	178	14.6	3.51	0.57	55.3
6	2910	0.21	0	13	27	0	4.70	155	14.0	3.B9	0.76	57.1
			58	14	25	58	4.65	163	15.6	3.69	0.69	57.6
			118	15	25	60	4.50	167	16.4	3.69	0.71	58.6
			178	16	25	60	4.40	171	17.1	3.97	0.73	58.9
			238	17	25	60	4.20	175	17.8	4.20	0.66	.60.1
			298	18	25	60	4.02	179	19.0	4.23	0.69	62.4
R	3005	0.43	. 0	13	27	0	4.45	156	14.7	3.43	0.75	57.3
			5B	14	25	58	4.30	164	15.4	3.42	0.69	57.2
			118	15	25	60	4.12	168	17.5	3.67	0.59	58.6
			178	16	25	60	3.95	172	17.3	3.82	0.73	60.4
			238	17	25	60	3.75	176	18.1	3.93	0.70	63.3
			29B	1B	25	60	3.60	180	18.9	3.92	0.71	63.7
B	3010	0.44	0	13	27	0	4.77	157	14.5	3.63	0.77	53.7
			58	14	25	58	4.55	165	- 15.4	3.70	0.71	60.6
			118	15	25	60	4.35	169	16.4	4.10	0.72	59.9
			178	16	25	60	4.15	173	17.3	4.03	0.69	60.4
			23B	17	25	60	3.90	177	18.5	4.19	0.69	63.2
			298	18	25	60	3.68	181	19.1	4.79	0.67	66.1

									ر هي جي جي جين الله من هي ه	، هو هيا تلك من حن حن حي في م			• <b>•••••</b> ••••••••••••••••••••••••••••••	
	-	CORE	LUME	CURE HZU	LINE	1	INE UP	DELIA				1107-1100		
STALLUM	DAIE,	NU.	VUL	HELDHI	SUN	ີ 10 10	ANYLE	11RE	. <u>.</u> 90	RA VIAL	NH4	NUS+NUZ	: DIN Jum D	SILUH)4
		ا ها ها دل کردن درد.	(nL)	IN/	(BID)				(ПБ/1)	) RU.	(UN-N)	(UN-W)	(un-r)	/(07-51/
RAG PT	19-AUG-1	BS BL			0	12	0	0	4.65	3	13.2	0.45	0.70	47.7
					30	12	30	30	4.74	7	15.7	0.51	0.57	47.7
					60	13	0	30	4.80	11	12.0	0.56	0.56	47.2
					90	13	30	30	4.86	16	15.0	0.47	0.78	45.8
· · -					120	- 14	0	30	4.91	21	14.2	0.47	0.50	49.0
		6	3050	0.22	0	12	- 0	0	5.65	<b>4</b>	15.9	0.58	0.56	48.4
					30	12	30	30	5.50	8	12.6	0.45	0.53	49.5
					60	13	0	30	5.32	12	. 14.4	0.54	0.51	48.7
					90	13	30	30	5.25	17	14.0	0.67	0.55	48.7
					120	14	0	30	5.15	22	17.6	0.77	0.51	49.3
					180	15	0	60	4.95	25	16.6	0.52	0.70	50.0
		R	3875	0.28	0	12	0	0	5.55	5	13.9	0.91	0.57	49.8
					30	12	30	30	5.40	9	15.1	0.53	1.29	48.8
					60	13	0	30	5.10	13	15.9	0.60	0.43	47.9
					90	13	30	30	5.02	18	14.3	0.71	0.49	49.8
					120	14	0	30	4.90	23	15.9	0.85	0.47	49.3
					180	15	0	60	4.64	26	17.9	0.86	0.46	50.4
	•	Đ	2040	0.00	۵	12	•			1	15 0		A 51	50 1
		0	2040	V. 2V	70	12	70	70	- 10+ 27- L 10	10	13.0	0.57	V.JO	30.1
						17	- JV - A	JU 70	2 DD	10	1410	0.32	N 14	17:0
					00	13	۷ ۲۸	30	5 70	19	· 1/13	V.00	0.51	47.J
					100	10	0 0	30 70	5 50	17	10 4	0 57	0.30	47.0 50.1
					100	11	V 	- 70 - 70	5,00	. 29	16.0	0.00	V.3/	JV.I 5(9
					104	۲٦	U.	ov	J: 40	21	10.0	.V.JZ	0.01	2112

STATION	DATE	CORE ND.	CORE Vol (ML)	CORE H20 HEIGHT (M)	TIME SUM (min)	T S HR	INE OF AMPLE Nin	DELTA TIME (min)	) (M6/1)	AA VIAL NO.	NH4 (uM-N)	NO3+NO2 (uH-N)	DIP (um-P)	SI (0H)4 ) (um-SI)
MD PT	19-AUG-85	BL		ه خاها هه چين منز من مين هو هو هو هو	0	15	45	0	5.33	28	7.1	6.98	2.28	63.8
					30	16	15	30	5.42	32	7.3	6.99	2.39	69.5
i.					60	16	45	30	5.54	36	8.0	7.19	2.27	64.6
~	in (me				<del>9</del> 0	17	15	30	5.69	40	8.2	7.06	2.41	66.9
					130	17	55	40	5.84	44	7.6	7.03	2.31	68.3
					195	19	0	65	6.03	48	8.9	7.26	2.56	63.3
		6	3090	0.22	0	15	45	0	5.00	29	13.9	6.85	3.24	67.6
					30	16	15	30	4.80	33	16.3	6.72	5.32	68.9
					96	16	45	30	4.60	37	16.4	6.86	3.79	63.5
					90	17	15	30	4.42	41	16.2	7.05	3.18	76.4
					130	17	55	40	4.23	45	18.9	7.12	3.29	.66.6
					195	19	0	65	4.00	49	19.3	7.39	3.31	80.0
		R	3110	0.22	0	15	45	0	4.70	30	10.4	6.72	2.36	70.7
					30	16	15	- 30	4.58	34	11.4	6.B4	2.38	73.1
					60	16	45	30	4.50	38	13.1	6.90	2.62	71.6
					90	17	15	30	4.40	42	13.1	6.97	2.66	72.0
					130	17	55	40	4.30	46	13.8	7.18	2.59	74.1
					195	19	0	65	4.11	50	13.9	7.33	2.88	74.3
		B	3070	0.22	0	15	45	0	4.90	31	11.4	6.69	2.41	67.0
					30	16	15	30	5.09	35	13.3	6.67	2.57	71.4
					60	16	45	30	4.98	39	14.7	6.85	2.48	67.6
					90	17	15	30	4.85	43	16.9	6.83	2.70	74.0
					130	17	-55	40	4.72	47	18.7	6.85	3.36	69.8
					195	19	0	65	4.55	51	21.1	7.17	2.91	73.8

STATION	DATE	CORE NO.	CORE	CORE H2D HEIGHT	TIME	T I Si	INE OF	DELTA	DD	AA VIAL	NH4	NO3+ND2	DIP	SI (DH) 4
			· (ML) ·	(M)	(min)	HR	MIN	(min)	(M6/1)	NO.	(uH-N)	(uH-N)	(uH-P)	(uH-SI)
PT ND PT.	20-AUG-8	5 BL			0	9	20	0	2.82	54	16.3	2.12	0.74	40.7
					45	10	5	45	2.93	58	14.0	1.57	0.91	38.2
			• 1		95	10	55	50	3.04	63	13.7	3.07	0.75	35.3
					155	11	55	60	3.16	68	- 14.7	2.13	0.74	34.7
					215	12	55	60	3.22	72	14.1	1.49	0.68	35.3
					280	14	0	65	3.30	84	18.2	1.84	0.75	35.8
		8	2925	0.21	0	9	20	0	3.15	55	15.5	1.39	0.68	36.4
		-			45	10	5	45	3.05	59	14.2	1.69	0.77	38.8
					95	10	55	50	3.04	64	14.8	1.78	0.67	40.1
· · · ·					155	11	55	60	2.97	69	15.7	1.41	0.66	42.2
					215	12	55	60	2.85	. 73	17.3	1.49	0.84	43.6
					280	14	0	65	2.75	85	18.0	1.90	0.65	46.1
		R	3260	0,23	0	9	20	0	3.10	56	15.7	2.47	0.72	37.4
					45	10	5	45	3.00	60	16.0	2.07	0.71	38.0
					95	10	55	50	2.94	65	15.2	2.68	0.73	40.0
•					155	11	55	60	2.80	70	19.1	1.70	0.69	42.7
					215	12	55	60	2.75	74	1B.6	1.20	0.60	45.5
					280	14	0	65	2.63	86	20.1	1.59	0.73	47.4
		B	3290	0.24	0	9	20	0	3.20	57	18.3	1.89	0.82	46.1
					45	10	5	45	3.10	61	16.4	1.66	0.7 <b>6</b>	37.9
					95	10	55	50	2.99	66	16.8	1.68	0.70	40.7
					155	11	55	60	2.88	71	17.5	5 2.12	0.73	42.9
					215	12	55	60	2.80	75	17.4	1.66	0.68	44.1
					280	14	0	65	2.70	87	20.7	1.28	0.67	45.7

STATION	DATE	CORE ND.	CORE Vol	CDRE H2D HEI <del>GH</del> T	TIME	T) Si	IME DF AMPLE	DELTA TIME	DO	AA VIAL	NH4	ND3+ND2	DIP	SI (DH) 4
			- (ML)	( <b>H</b> )	(min)	HR	HIN	(min)	(MG/1)	ND.	(uH-N)	(uM-N)	(uH-P)	) (uM-SI)
R-64	20-AUG-B	5 BL			0	13	5	0	2.21	76	19.8	1.76	1.16	35.1
				-	40	13	45	40	2.36	80	20.5	2.07	1.14	35.1
					100	14	45	-60	3.00	89	20.2	1.75	1.16	34.7
				·	165	15	50	65	3.46	94	21.1	2.02	1.16	34.2
					225	16	50	60	3.72	102	20.2	2.01	1.20	35.2
					285	. 17	50	60	3.88	110	20.9	2.15	1.23	34.9
		ĥ	3000	0.27		13	- 5	0	2.00	77	22.0	1.65	1.45	39.2
					40	13	45	40	2.00	81	24.0	1.78	1.42	42.0
					100	14	45	60	2.03	90	25.4	1.60	1.54	43.4
					165	15	50	65	2.00	95	26.7	1.52	1.52	46.2
					225	16	50	60	1.85	103	27.8	1.53	1.43	49.5
					285	17	50	60	1.82	111	29.8	1.37	1.57	50.1
		R	2380	0.17	0	13	5	0	2.12	78	28.8	1.66	1.57	41.1
					40	13	45	40	2.05	82	25.6	1.76	1.94	44.3
					100	14	45	60	1.85	91	29.4	1.94	2.24	4B.4
					165	15	50	65	1.56	. 96	30.8	1.32	2.31	53.2
					225	16	50	60	1.30	104	35.1	1.35	2.90	56.B
					285	- 17	50	60	1,05	112	36.7	2.45	3.30	59.4
		B	2760	0.20	0	13	5	0	2.44	79	21.8	1.68	1.47	38.4
,					40	13	45	40	2.45	83	- 23, 5	1.81	1.53	40.8
					100	14	45	60	2.45	92	25.9	1.43	1.76	43.5
					165	15	50	65		97	34.3	1.76	1.80	45.0
					225	16	50	60	2.25	105	29.4	1.49	1.90	47.7
					285	17	-50	60	2.20	113	30.5	1.56	2.05	50.4

STATION	DATE	ND.	CDRE Vol (NL)	CORE H20 Height (M)	TIME SUM (min)	HR	TIME OF Sanple Min	DELTA TIME (min)	D0 (M6/1)	AA VIAL ND.	NH4 (uM-N)	ND3+ND2 (um-N)	DIP (uN-P	SI (OH) 4 ) (uM-SI)
 R-78	20-AUG-85	BL			0	16	10	0	0.48	98	23.0	0.30	1.42	46.3
					50	17	0	50	0.58	106	23.1	0.53	1.45	45.9
	•				110	18	0	60	0.68	114	23.6	1.69	1.49	45.6
					170	19	0	60	0.80	118	22.1	1.15	1.43	46.8
					230	20	0	60	0.91	122	23.0	0.63	1.37	46.3
					290	21	0	60	1.12	126	23.0	0.64	1.34	46.3
		6	2950	0.21	0	16	10	0	2.23	99	23.6	0.40	1.61	48.4
					50	17	0	50	2.17	107	25.6	0.51	1.58	49.3
					110	18	0	60	2.14	115	25.8	0.49	1.49	50.8
					170	19	0	60	2.05	119	25.2	0.89	1.47	53.3
					230	20	0	60	1.98	123	26.1	0.49	1.33	53.7
					290	21	0	60	1.92	127	26.7	2.03	1.43	54.3
		R	3100	0.22	0	16	10	0	2.40	100	25.8	1.13	1.78	4B.9
					50	17	0	50	2.35	108	25.2	0.71	1.67	50.4
					110	18	0	60	2.27	116	27.0		1.60	51.2
					170	15	0	60	2.20	120	26.1	0.83	1.61	53.2
					230	20	0	60	2.15	124	26.8	1.17	1.53	54.6
					290	21	0	60	2.06	128	26.5	1.47	0.70	56.4
		B	3000	0.22	0	16	10	0	2.55	101	30.4	0.72	2.02	48.7
					50	17	0	50	2.06	109	30.3	0.71	2.41	50.3
					110	18	0	60	2.06	117	29.0	0.37	2.33	51.0
					170	19	0 0	60	2.03	121	30.6	1.41	2.55	54.6
					230	20	) 0	60	2.05	125	31.5	0.66	2.45	56.1
					290	21	0	60	2.05	129	32.6	1.22	2.50	57.4

STATION	NATE	CORE	CORE	CORE H20	TIME	]	INE OF	DELTA	ារា		NHA	N03+N02	• NTP	ST (DH) 4
0111101	SUIT		(ML)	(M)	(ain)	HR	HIN	(min)	(M6/1)	) NO.	(uM-N)	(uH-N)	(uM-P	) (uM-SI)
STIL PD	21-AUG-85	BL	a ina da da da Color Da Chi da		0	8	35	0	5.44	132	3.0	16.70	0.99	36.2
					60	9	35	60	5.65	136	2.5	17.30	0.93	37.1
$\langle \cdot \rangle$					120	10	35	60	5.79	140	2.5	17.30	0.90	34.8
	A.				180	11	35	60	5,86	144	3.0	17.60	0.90	37.3
					240	12	35	60	5.87	150	2.9	17.60	0.90	40.0
					300	13	35	60	5.95	158	2.5	17.60	0. <b>B</b> 4	36.4
		6	3000	0.22	0	8	35	.0	4.80	133	3.0	17.30	0.90	32.3
					60	9	35	60	4.67	137	3.7		1.03	41.3
					120	10	35	60	4.52	141	4.1	17.90	1.00	39.5
					180	11	35	60	4.35	145	4.4	18.10	0.94	48.9
					240	12	35	60	4.21	151	4.6	17.50	0.99	45.5
					300	13	35	60	4.06	159	5.3	18.20	0.95	45.8
		R	3160	0.23	0	8	35	0	4.95	134	2.6	17.30	0.90	38.4
					60	9	35	60	4.90	138	3.4		0.94	32.8
					120	10	35	60	4.71	142	3.2	17.60	0.92	32.5
					180	11	35	60	4.65	146	3.5	17.90	0.95	41.4
					240	12	35	60	4.60	152	4.0	18.80	0.90	42.4
					300	13	35	60	4,47	160	4.5	18.40	1.15	36.0
		B	3030	0.22	0	8	35	0	4.65	135	3.3	17.20	0.90	36.3
					6U	9	35	60	4.87	139	- 3.4	17.70	0.95	34.3
					120	10	35	. 60	4.75	143	4.7	17.50	0.95	40.4
					180	11	35	60	4.60	147	5.4	17.60	0.91	44.2
					240	12	35	60	4.45	153	6.8	17.80	0.94	38.4
					300	13	35	60	4.35	161	7.1	17.70	0.95	37.6

STATION	DATE	CORE ND.	CDRE Vol (ml)	CORE H20 Height (N)	TIME SUM (min)	T S HR	INE OF AMPLE MIN	DELTA TIME (min)	D0 (M671)	AA VIAL NO.	NH4 (uH-N)	ND3+ND2 (um-N)	DIP (un-P	SI (OH) ) (uM-SI
SONE 6								 ^	7 77					
51.LEU	16-001-8	0 81			V AG	17	3U 10	40	7 14	101	5.4	7 71	0 75	23 6
Ś.	`				70	20	10	<del>ع</del> ه ۲۸	7 17	191	58	3.38	0.72	23.1
	₹.				115	21	25	45	7.17	195	5.9	0.55	0.72	23.3
					160	27	10	45	7.17	199	5.8	3.56	0.72	23.5
					220	23	10	60	7.15	203	5.6	3.62	0.73	23.2
		1	2770	0.20	0	19	30	0	7.01	180	6.2	3.58	0.63	21.9
					40	20	10	40	6.90	187	6.2	3.46	0.73	23.2
					70	20	40	30	6.81	192	6.4	3.51	0.69	23.9
					115	21	25	45	6.68	196	6.8	3.65	0.73	25.0
					160	22	10	45	6.58	200	7.1	3.91	0.75	25.8
					220	23	10	60	6.45	204	7.6	4.56	0.74	26.6
		2	2815	0.20	0	19	30	0	7.11	182	5.8	3.35	0.69	22.5
					40	20	10	40	6.95	188	6.4	3.56	0.69	
					70	20	40	30	6.80	193	6.5	3.58	0.75	24.6
					115	21	25	45	6.65	197	7.5	3.46	0.72	25.9
					160	22	10	45	6.50	201	7.4	3.77	0.82	27.1
					22ů	23	10	60	6.30	205	- 8.0	3.87	0.82	23.2
		3	2305	0.17	0	19	30	0	7.22	183	6.1	3.43	0.70	22.5
					40	20	10	40	7.09	189	6.5	3.51	0.74	23.6
					70	20	40	30	6.95	194	6.3	3.67	0.81	24.2
					115	21	25	45	6.87	198	6.4	3.80	0./8	26.9
					160	22	10	45	6.72	202	6.9	4.04	0.85	28.6
					220	23	10	60 b0	•	206	6.8	5.84	v.85	27.0
							ъ.,		÷.				۰.	· .

STATION	DATE	CORE ND.	core VDL	CORE H2D HEIGHT	TINE	T	IME DF AMPLE	DELTA TIME	DO	AA VIAL	NH4	ND3+ND2	DIP	SI (DH) 4
			(ML)	(件)	(min)	HR	MIN	(min)	(MG/1)	NO.	(uM-N)	(uH-N)	(uM-P	) (uM-SI)
BU.VISTA	16-DCT-8	5 B1			0	16	45	0	8.21	157	0.5	1.55	2.49	63.0
					30	17	15	30	8.21	162	0.5	1.79	2.69	60.4
		· · ·			60	17	45	30	8.16	167	0.5	1.63	2.55	61.3
				4 .	90	18	15	30	8.14	172	0.4	1.45	2.60	62.1
					120	18	45	30	8.09	176	0.5	1.53	2.50	61.5
		1	2405	0.17	0	16	45	0	8.49	158	0.7	1.41	2.63	60.0
· · · · ·					30	17	15	30	8.21	163	1.6		2.81	63.0
·					60	17	45	30	7.92	168	2.0	1.54	2.68	61.8
					90	1B	15	30	7.69	173	2.8	1.77	2.B6	63.7
					120	18	45	30	7.40	177	3.2	1.74	2.96	65.9
					190	19	55	70	6.B2	184	4.9	1.91	3.12	65.7
														•
		2	2345	0.17	0	16	45	0	7.15	159	1.2	1.89	2.58	59.4
					30	17	15	30	6.98	164	1.4	1.84	2.61	61.9
					60	17	45	30	6.78	169	1.9	1.90	2.66	62.1
					90	18	15	30	6.62	174	2.B	1.96	2.69	62.0
	•				120	18	- 45	30	6.40	178	3.0	2.15	2.89	64.6
					190	19	55	70	6.02	185	3.5	2.50	2.83	64.5
		7	7775	0.17	٥	14	45	<b>Δ</b>	7 71	140	1 7	1 07	2 51	47 9
		3	20/0	V.17	ں ۲۸	10	4J 15	י ע ז א	7 61	145	2.1	2.03	2.JL 7 LL	63 R
					70	17	1J 45	00 . 70	1.11	103	7.0	1 90	2.00	64.0
÷ .					0V 0V	10	נד 15	30 70	6. 77	175	ייי ז א	2 7 74	2 R5	64.2
					120	10	10 45	50 30	6.00	179	4 5	2.01	2.00	66.4
					190	10	70	70	5.33	184	5.2	2.28	3,19	68.1
					110	11			0100	100	012		VI1/	

STATION	DATE	CORE ND.	CDRE Vol (ML)	CDRE H20 HEIGHT (M)	TIME SUM (min)	1 S HR	TIME OF Sample Min	DELTA TIME (min)	D0 (MG/1)	AA VIAL ND.	NH4 (uM-N)	NO3+NO2 (um-N)	DIP (uM-P	SI (OH)4 ) (uM-SI)
HORN PT	15-0CT-85	5 Bl			0	15	25	0	7.96	107	2.8	1.40	0.30	12.2
					35	16	0	35	7.93	111	2.9	1.64	0.31	12.0
, X.					65	16	30	- 30	7.93	115	2.7	1.31	0.33	12.1
	٦.				142	17	47	77	7.90	120	2.8	1.50	0.33	12.0
					195	18	40	53	7.83	124	2.3	1.23	0.31	12.2
					255	19	40	60	7.82	141	2.3	1.81	0.33	11.8
		1	<b>280</b> 0	0.20	0	15	25	0	7.80	108	3.B	1.46	0.51	14.6
					35	16	0	35	7.60	112	4.5	1.45	0.64	12.8
					65	16	30	30	7.40	116	4.6	1.56	0.75	40.7
					142	17	47		7.20	121	5.5	1.//	0.83	18.3
					195	18	40	53	6.90	125	7.6	2.00	1.00	21.0
					255	19	40	60	6.70	142	8.3	2.56	1.15	22.9
		2	2975	0.21	0	15	25	0	7.76	109	3,8		0.44	13.5
		-			35	16	0	35	7.54	113	3.2	1.45	0.53	17.2
					65	16	30	30	7.40	117	3.9	1.57	0.58	15.8
					142	17	47	77	7.20	122	4.6	2.14	0.67	17.1
					195	18	40	53	6.90	126	6.2	2.02	0.88	19.5
					255	19	40	60	6.62	143	6.3	2.01	1.03	21.4
		_							7 00		• /		A 67	
		3	2900	0.21	0	15	25	0	7.90	110	4.0	1.61	0.3/	14.0
					35	16	0	30	1.64	114	4.8	1 57	V. D.)	15./
					60	16	35	35	7.50	118	0.1 5.1	1.0/	0.70	13.8
					142	1/	4/	//	1.51	123	3.9	1.67	0.80	1/.6
					195	18	40	53	/.00	127	/.8	1.85	0.92	14.4
					255	19	40	60	6.70	144	9.1	2.53	1.03	21.7

.

STATION	DATE	ND.	CORE Vol (ML)	CORE H20 HEIGHT (N)	TIME SUM (min)	T S HR	INE OF Ample Hin	DELTA TIME (min)	DO (M6/1)	AA VIAL ND.	NH4 (uH-N)	ND3+ND2 (uH-N)	DIP (u <del>n-P</del> )	SI (DH) 4 (um-si)
WIND HILL	 15-DCT-85	<b>B</b> 1	*****	********	0	1B	0	0	6.97	129	1.0	7.50	1.56	46.4
					30	18	30	30	6.99	134	1.0	7.50	1.50	45.7
					60	19	0	30	6.91	137	1.0	7.10	1.55	47.2
				•	90	19	30	- 30	6.91	145	0.9	7.80	1.59	46.9
					135	20	15	45	6.91	149	1.2	7.20	1.52	47.5
					195	21	15	60	6.86	153	1.0	7.70	1.45	46.7
		1 -	2300	0.17	. 0	18	0	0	6.70	130	1.9	7.60	2.74	48.2
		-			30	18	30	30	6.41	133	1.9	8.00	1.78	47.6
•					60	19	0	30	6.20	138	2.2	8.00	1.87	49.4
					90	19	30	30	5.92	146	2.9	8.50	1.95	50.1
					135	20	15	45	5.60	150	3.4	8.70	2.09	52.3
					195	21	15	60	5.10	154	4.3	9.00	2.40	53.8
														•
		2	2445	0.18	0	18	0	0	6.92	131	1.5	7.50	1.67	48.4
					30	18	30	30	6.70	135	1.8	7.60	1.71	49.5
					60	19	0	30	6.40	139	2.2	7.90	1.77	50.2
					90	19	30	30	6.10	147	2.6	8.00	1.87	51.9
	•				135	20	15	45	5.70	151	3.6	8.80	1.98	53.8
					195	21	15	60	5.34	155	5.0	<b>B.6</b> 0	2.13	57.1
		3	2440	0.18	0	18	0	0	6.80	132	1.4	8.00	1.66	49.1
		-			30	18	30	30	6.58	134	2.2	7.90	1.81	50.4
					60	19	0	30	6.30	140	2.8	8.30	1.91	51.7
					90	19	30	30	5,89	149	7.5	8.70	1.90	53.9
					135	20	15	45	5.35	157	1 9	9 76	2 51	56.2
					100	<b>T</b> A	10	ų Γ	0.00	1 1 4	9.1	1.19	2101	JU . L

STATION	DATE	ND.	CORE	CORE H20 HEIGHT	TIME	T S	INE OF Anple	DELTA	DO	AA VIAL	NH4	N03+N02	DIP	SI (OH)
			(TL) 	(Ħ) 	(#17) 	HK 	<b>NIN</b>	(min)	(#6/1)	NU.	(un-N)	(UN-N)	(un-P	) (uA-SI)
RAG PT	17-0CT-85	<b>B</b> 1			0	10	35	0	5.28	209	9.4	3.24	0.29	8.7
					30	11	5	30	5.32	213	9.6	3.07	0.18	8.5
					45	11	50	45	5.36	217	10.1	2.90	0.20	7.4
100 C	X.				100	12	45	55	5.41	221	9.7	2.88	0.20	9.5
					167	13	52	67	5.47	225	9.7	2.90	0.18	8.2
		·			227	14	52	60	5.49	230	9.0	3.18	0.19	11.7
		1	2900	0.21	0	10	35	0	5.50	210	11.3	2.79	0.31	10.0
					30	11	5	30	5.39	214	13.4	3.06	0.34	
					75	11	50	45	5.30	218	15.0	2.86	0.33	11.6
					130	12	45	55	5.20	222	16.6	3.01	0.35	.13.3
					197	13	52	67	5.10	226	18.1	2.90	0.32	15.3
					257	14	52	60	5.00	231	20.2	2.95	0.30	17.9
		2	2700	0.19	0	10	35	0	5.05	211	13.5	3.09	0.50	10.5
					30	11	5	- 30	4.95	215	14.9	2.80	0.57	11.6
					75	11	50	45	4.86	219	17.2	2.80	0.64	12.9
					130	12	45	55	4.73	223	19.3		0.69	14.3
					197	- 13	52	67	4.60	227	20.9	2.92	0.65	15.9
					257	14	52	60	4.50	232	22.4	2.93	0.64	19.1
					-									
		3	2750	0.20	0	10	35	• • •	5.21	212	11.8	2.96	0.31	10.2
					30	11	_5	30	5.15	216	14.3	2.96	0.33	10.9
					75	11	50	45	5.06	220	15.5	3.02	0.34	11.8
					130	12	45	55	4.91	224	17.8	3.00	0.31	13.8
					197	13	52	67	4.80	228	19.9	2.95	0.31	15.8
					257	14	52	60	4.65	233	21.4	2.97	0.30	17.3

STATION	DATE	CDRE NG.	CORE Vol (ML)	CORE H2D HEIGHT (N)	TIME SUM (min)	T S Hr	IME OF Ample Min	DELTA TIME (min)	DO (MG/1)	AA VIAL NO.	NHA (uM-N)	ND3+ND2 (uH-N)	2 DIP (um-	SI (DH) 4 P (un-si)
ND PT	17-DCT-85	5 Bl			0	15	30	0	7.72	234	0.5	17.30	1.73	66.9
					30	16	0	- 30	7.70	238	0.6	17.30	1.68	68.6
		• .			60	16	30	30	7.79	242	0.5	17.30	1.67	67.9
					90	17	0	30	7.72	246	0.5	17.10	1.70	67.4
					120	17	30	- 30	7.76	250	0.6	17.10	1.72	69.0
					175	18	25	55	7.74	254	0.6	17.40	1.67	67.0
	•													
•		1	3090	0.22	0	15	30	0	7.89	235	1.7	17.00	1.67	66.1
	- -	-			30	16	0	30	7.68	239	2.5	16.80	1.72	70.7
					60	16	30	30	7.45	243	4.5	16.60	2.23	72.5
					90	17	0	30	7.25	247	5.6	16.50	1.72	72.7
					120	17	30	30	7.10	251	6.5	16.60	1.72	74.3
					175	18	25	55	6.70	255	8.8	16.50	1.72	71.6
		2	3220	0.23	0	15	30	0	7.76	236	1.5	16.80	1.74	69.6
					30	16	0	30	7.64	240	2.2	16.90	1.72	70.7
					60	16	30	30	7.40	244	3.2	16.60	1.97	71.7
					90	17	0	30	7.25	248	3.5	16.50	1.76	71.3
					120	17	30	30	7.10	252	4.0	16.50	1.78	72.7
					175	18	25	55	6.75	256	5.3	16.50	1.82	73.0
	•													
		3	3270	0.24	0	15	30	0	7.92	277	17	17 00	1 77	10 8
		Ť		20.00	30	16	. 0	30	7.74	207	2.7	14 90	1 70	97.5 40 5
					60	16	30	30	7.55	241	35	17.00	1.75	72 5
					90	17	0	30	7.35	240	4 1	16.60	1.75	71 4
					120	17	30	30	7.15	253	5.0	16.80	1.79	73 3
					175	18	25	55	6.85	257	- 6.2	16.50	1.79	79.5
							**		0100	201	ų. Z	10100	4177	1211

		·					, , ,							
074710V	DATE	CORE	CORE	CORE H2D	TIME	. 1	IME OF	DELTA						
DIAIIUN	DALE	NU.	(ML)	(M)	(min)	HR	MIN	(min)	טע (MG/1)	AA VIAL ND.	NH4 (uM-N)	NUS+NU2 (UM-N)	UIP (um-P)	51(DH)4 ) (uM-SI)
PT NO PT	14-DCT-85	B1	نو هو ما دنو خو خرا خرد ه		 0	10	40	0	5.95	3	5.0	1.91	0.13	2.6
					45	11	25	45	5.97	7	5.0	1.90	0.12	2.5
÷.					85	12	5	40	5.97	11	5.2	1.95	0.12	2.5
· · · ·	in the				130	12	50	45	6.02	16	5.1	1.90	0.16	5.4
					175	13	35	45	6.05	20	5.3	2.04	0.13	2.9
					235	14	35	60	6.27	29	7.0	2.63	0.50	2.9
		1	2630	0.19	0	10	40	0	7.90	. 4	5.5	1.82	0.13	3.9
· .					45	11	-25	45	7.85	8	5.7	2.26	0.16	5.3
					B5	12	5	40	7.80	12	6.2	1.75	0.13	•
					130	12	50	45	7.70	17	6.7	1.78	0.13	7.7
					175	13	35	45	7.60	21	6.7	1.88	0.16	9.2
					235	14	35	60	7.35	30	7.6	2.07	0.20	11.2
												•		
		2	3000	0.22	0	10	40	0	6.45	5	5.2		0.16	4.0
					45	11	25	45	6.31	9	5.6	1.76	0.14	6.0
					85	12	5	40	6.20	13	5.9	1.81	0.15	7.4
					130	12	50	45	6.05	18	6.2	1.94	0.16	8.6
					175	13	35	45	5.95	22	6.6	1.89	0.14	9.7
					235	14	35	60	5.70	31	· 7.4	1.75	0.16	12.0
					1									
		3	3005	0.22	- <b>O</b>	- 10	. 40	0	6.90	6	6.0		0,10	4.4.
					45	11	25	45	6.65	10	6.2	1.73	0.11	5.4
					85	12	5	40	6.51	14	6.B	2.01	0.16	
					130	12	50	45	6.39	19	6.5	1.73	0.13	9.1
					175	13	35	45		23	6.6	1.B2	0.14	8.6
					235	14	35	60	6.10	32	7.2	2.08	0.18	12.2

THE PART

4-53

.

STATION	DATE	CORE NO.	core Vol	CORE H20 HEIGHT	time Sum	T	INE OF Ample	DELTA	DD	AA VIAL	NH4	ND3+ND2	2 DIP	SI (DH) 4
			(ML)	(Ħ)	(min)	HR	MIN	(min)	(M6/1)	ND.	(uH-N)	(uH-N)	(ulf-P	) (uM-SI)
R-64	14-0CT-85	5 B1			0	14	10	0	4.12	24	13.B	2.73	0.33	20.3
					45	14	55	. 45	4.14	33	15.5	2.86	0.35	19.8
					90	15	40	45	4.36	37	14.6	2.74	0.34	19.4
					135	16	25	45	4.60	42	14.6	3.09	0.35	22.3
					180	17	10	45	4.76	47	13.9	2.88	0.34	20.2
					245	18	15	65	4.86	59	13.9	2.68	0.33	19.7
		1	2180	0.16	0	14	10	0	4.25	25	16.7	2.53	0.59	22.8
					45	14	55	45	4.15	34	19.4	2.69	0.73	26.4
•					90	15	40	45	3.95	38	20.7	2.54	0.72	29.8
					135	16	25	45	3.92	43	22.8	2.44	0.76	33.1
					180	17	10	45	3.94	48	23.B	2.34	0.76	38.2
					245	18	15	65	3.62	- 60	26.2	2.48	0.80	38.4
		2	2350	0.17	0	14	10	0	4.35	26	16.0	2.74	0.57	23.8
					45	14	55	45	4.20	35	19.2	2.57	0.63	27.9
					90	15	40	45	4,08	39	20.9	2.48	0.65	33.9
					135	16	25	45	3.91	44	22.8		0.70	33.3
	•				180	17	10	45	3.81	49	23.6	2.33	0.72	37.1
					245	18	15	65	3.60	61	25.8	2.63	0.89	39.5
		7	9140	A 10	٨	14	10	٨	4 51	70	16 5	255	0.41	21 C
		3	2000	V. 17	Ű AE	14	10	10	4 50	21 71	10.0	2,JJ 	V:41 A #1	21.0 77 7
					57 00	14	00 #0	57 . 45	9,JU 4 EA	30	10.0	2.10	V. 10	23.7
					175	10	40 20	5 TU 10	. 4. JU 4. 4. 1	4V 45	17.0	2.40	V. 4/	23.0
					100	10	20	57 12	7176	67 50	21.4	ם ד כ	0.51	27.1
					186	17	10	40 70	4,00	00 (1	22.1	2.38	V. JI 0 51	32.V 71 0
					24J	10	19	03		02	22.1		V. 30	91.0

STATION	DATE	CORE NO.	cdre Vol	CORE H20 Height	TINE	T S	INE OF Ample	DELTA	DO	AA VIAL	NH4	N03+N02	DIP	51 ( <del>DH</del> )4
			(ML)	(11)	(min)	HR	MIN	(min)	(M6/1)	ND.	(uM-N)	(uM-N)	(uM-P	) (uH-SI)
R-78	14-DCT-	B5_B1			0	17	20	0	2.88	51	12.4	11.10	0.62	35.6
					40	18	0	40	3.02	55	12.3	11.00	0.65	36.4
		·· •			70	iB	30	30	3.07	63	12.5	10.90	0.62	35.9
1. The second					115	19	15	45	3.16	67	12.7	10.60	0.64	35.1
					175	20	15	60	3.27	71	12.4	10.80	0.66	35.1
					235	21	15	60	3.38	75	13.0	10.10	0.70	35.5
			· ·											
		1	2680	0.19	0	17	20	0	4.25	52	13.0	10,90	0.71	34. B
					40	18	0	40	4.25	56	13.1	10.50	0.64	37.9
					70	18	30	30	4.21	64	14.1	10.50	0.70	38.5
					115	19	15	45	4.21	68	14.0	10.10	0.66	39.9
					175	20	15	60	4.20	72	14.6	10.30	0.71	40.7
					235	21	15	60	4.20	76	15.5	11.00	1.09	43.2
		2	2860	0.21	0	17	20	0		53	12.B	10.90	0.75	36.9
					40	18	0	40	2.90	57	13.9	10.40	0.61	37.8
					70	18	30	30	2.90	65	13.B	10.50	0.62	37.8
					115	19	15	45	2.85	69	14.1	10.70	0.68	39.1
					175	20	15	60	2.B0	73	14.8	10.30	0.64	40.1
					235	21	15	60	2.75	77	15.2	10.40	0.70	40.6
											•			
		3	2630	0.19	0	. 17	20	0		54	13.6	10.40	0.63	37.6
					40	18	0	40	3.30	58	14.2	10.20	0.65	38.1
					70	1B	-30	-30	3.19	66	14.2	10.30	0.64	39.0
					115	19	15	45	3.19	70	14.8	10.40	0.65	40.4
					175	20	15	60	3.19	74	15.4	12.30	0.66	41.1
					235	21	15	60	3.19	78	16.3	10.30	0.72	43.0

STATION	DATE	CORE NO.	CORE Vol (HL)	CORE H2D HEIGHT (M)	TIME SUN (min)	1 FR	INE DF Anple Min	DELTA TIME (min)	DC (M6/1	AA VIAL ) ND.	NH4 (uM-N)	ND3+ND2 (uH-N)	2 DIP (um-P	SI (OH) 4 ) (uH-SI)
STIL PD	15-DCT-85	<b>B</b> 1			0	10	30	0	6.82	81	7.9	36.20	0.66	31.4
					45	11	15	45	6.80	85	6.8	36.70	0.67	31.4
		•			-90	12	. 0	45	6.80	89	6.4	36.70	0.62	30.9
					137	12	47	47	6.80	93	6.7	37.00	0.71	31.4
					180	13	30	43	6.79	97	6.4	36.50	0.67	31.0
					240	14	30	60	6.77	102	6.2	37.40	0.64	31.6
·.		1.	2515	0.18	0	10	30	0	6.99	82	7.1	36.50	0.72	31.3
					45	11	15	45	6.80	B6	7.2	36.40	0.73	31.1
					90	12	0	45	6.65	90		36.30	1.25	31.9
					137	12	47	-47	6.50	94	7.8		0.93	32.7
					180	13	30	43	6.35	98	8.0	36.20	0.68	34.0
					240	14	30	60	6.10	103	8,4	36.20	0.75	35.1
		2	2410	0 10	٨	10	70	م	L 40	50	7 0	74 70	0 70	
		4	2010	V117	15	11	15	45	4 50	0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	/.v	74 70	0.7V	75 1
					75	17	1.0	1J 45	0.JV 1 70	Q7 01	7 9	30.30	0.74	32.0
					70	12		10 17	6,00	. 71	1.2	74 76	V./4	ם כד
	•				100	17	۲7 ۲۸	11. 17	6.22	75	70	30,70	0.73	JZ.0 77 5
					240	10	30	4J 10	1 00	17	7.0	33.00	0.77	717
						14	20	vo	0.00	104	/.0	30.00	v./8	34.7
		3	2645	0.19	0	10	30	0	6.70	B4	6.9	36.20	0.71	32.3
					45	11	15	45	6.61	88	6.9	36.30	0.6B	31.8
					90	12	0	45	6.41	92		36.30	0.72	32.9
					137	12	47	47	6.38	96	7.3	36.30	0.74	33.2
					180	13	30	43	6.15	100	7.3	36.50	0.73	33.5
					240	14	30	60	5.98	105	7.4	35.BO	0.71	34.8

STATION	DATE	CORE ND.	CORE	CORE H20 HEIGHT	TIME Sum	T: Si	INE OF MPLE	DELTA TIME	DO	AA VIAL	NH4	N03+ND2	DIP	<b>51 (0H)</b> 4
			(ML)	(M)	(min)	HR	MIN	(min)	(MG/1)	NO.	(uM-N)	(uH-N)	(uM-P)	(uM-SI)
SONE 7			منغ هيد منه باند منه خان منه بانه ها	# # # # # # # # # # # # # #	******	ز دين جي ديله خف طه تنت				، کودین دین دین جو جن هن هن غار		نہ حب ضد خت تین دی جو دی		
ST.LED	8-NAY-86	<b>B</b> 1			0	8	53	0	7.59	209	2.1	23.90	0.10	2.1
					30	9	23	30	7.56	215	1.9	23.70	0.10	2.2
1 . A				•	88	10	21	58	7.54	221	1.9	23.70	0.09	2.3
					125	10	58	37	7.53	225				
					151	11	- 24	26	7.63	229	1.9	23.60	0.08	2.2
					211	12	24	60	7.57	237	2.0	23.60	0.07	3.1
		1	2000	0,14	0	8	53	0	7.6B	210	2.2	23.60	0.08	3.3
					30	9	23	30	7.50	216	1.9	23.50	0.06	4.2
· • ·					88	10	21	58	7.21	ch 222	2.0	22.90	0.08	6.1
					125	10	58	37	7.04	^{6. °°} 226	2.0	22.70	0.08	7.0
					151	11	24	26	(7.88	230	2.1	22.60	0.08	B.0
					211	12	24	60	6.58	238	2.6	22.30	0.06	10.0
		2	2125	0.15	0	8	53	0	7.64	211	2.0	23.60	0.08	3.1
		-			30	9	23	30	7.50	217	2.2	23.30	0.08	4.2
					88	10	21	58	7,18	223	2.3	22.90	0.08	5.5
					125	10	58	37	6.98	227	2.7	22.60	0.06	6.5
					151	11	24	26	6.83	231	2.7	22.50	0.09	7.4
					211	12	24	60	6.37	239	3.1	22.00	0.10	10.0
		3	2220	0,16	Û	R	53	D	7.65	212	2.0	23,60	0.08	3.1
		v			30	9	23	30	7.50	218	2.0	23.50	0.08	3.6
					BR	10	21	58	7.26	224	2.2	23.20	0.07	5.5
					125	10	58	37	7.11	228	2.1	22.90	0.0R	6.0
					151	11	24	26	. 6.9B	232	2.5	22.90	0.09	6.8
					211	12	74	60	6.67	240	2.7	22.70	0.10	8.3

STATION	DATE	CORE NO.	CDRE Vol (ML)	CORE H20 HEIGHT (N)	TIME SUM (min)	T S HR	INE OF Ample Min	DELTA TIME (min)	DD (MG/1)	AA VIAL ND.	NH4 (uH-N)	ND3+ND2 (u <del>n-</del> N)	DIP (uN-P)	SI (DH) (uH-SI)
BU.VISTA	B-MAY-B6	 B1			0		59	0	9.03	233	0.2	0.15	0.20	16.8
					41	12	40	41	8.95	241	0.2	0.18	0.25	16.9
					107	13	46	66	<b>B.84</b>	245	0.6	0.20	1.29	17.4
144	ens Alex				144	14	23	37	8.78	249	<b>0.2</b>	0.21	0.18	17.0
					178	14	57	- 34	8.71	253	0.5	1.88	0.17	16.5
					276	16	35	98	8.59	257	0.9	0.14	0.20	16.3
		1	1840	0.13	0	11	59	0	8.81	234	0.4	0.33	0.30	19.3
					41	12	40	41	7.63	242	0.7	0.58	0.31	23.0
					107	13	46	66	6.20	246	2.5	0.89	1.70	2B.3
					144	- 14	23	37	5.47	250	2.1	1.06	0.45	30.9
					178	14	57	34	<b>4.</b> 88	254	2.B	1.15	0.47	33.0
					276	16	35	98	3.31	258	4.2	1.61	0.52	40.5
		2	2000	0.14	0	11	59	0	8.95	235	0.2	0.23	0.30	18.9
					41	12	40	41	7.81	243	0.5	0.46	0.31	22.9
					107	13	46	66	6.50	247	1.2	0.90	0.40	27.5
					144	14	23	37	5.82	251	1.9	1.23	0.54	30.4
					178	14	57	34	5.30	255	2.4	1.35	0.52	33.0
					276	16	35	- 78	3.91	259	4.3	1.81	0.55	38.8
		3	1985	0.14	0	11	59	0	8.83	236	0.3	0.1B	0.23	18.B
					· 41	12	40	41	7.86	- 244	- 0.4	0.37	0.33	22.2
					107	13	46	66	6.B2	248	1.7	0.70	0.40	26.8
					144	14	23	37	6.24	252	1.7	1.05	0.41	29.4
					17B	14	57	34	5.76	256	2.1	1.00	0.46	31.1
					276	16	35	9B	4.51	260	3.4	1.39	0.53	38.1

• 64 - 64 - 64 - 64 - 64 - 64 - 64 - 64	<b></b>	CORE	CORE	CORE H20	TIME	 T	INE DF	DELTA						6 ay ay in the first fir
STATION	DATE	NO.	VOL (ML)	HEIGHT (M)	SUM (min)	S HR	GAMPLE MIN	TIME (min)	D0 (N6/1)	AA VIAL NO.	(uM-N)	NO3+NO2 (uH-N)	DIP (uM-P)	SI(OH)4 )(uM-SI)
Horn Pt	3-NAY-86	BL			0	12	11	0	9.90	3	1.1	25.20	0.08	1.8
	•				63	13	14	63	9.73	7	1.4	25.00	0.09	1.6
					95	13	46	32	9.74	11	1.1	25.00	0.06	1.6
				•	127	14	18	32	9.66	15	0.7	24.90	0.06	1.7
					162	14	53	35	9.74	19	0.6	24.90	0.06	1.4
					226	15	- 57	64	9.67	23	0.9	25.30	0.09	1.4
		1	1970	0.14		12	11	0		4	0.9	25.10	0.11	2.8
•					63	13	14	63	9.57	. 8	1.3	25.40	0.14	3.6
· · ·					95	13	46	32	9.52	12	3.0	25.30	0.36	4.6
					127	14	18	32	9.40	16	7.8	26.20	0.55	5.4
					162	14	53	35	9.25	20	1.5	24.70	0.14	6.5
					226	15	57	64	8.86	24	2.4	24.20	0.18	8.2
		2	1875	0.13	0	12	11	0		5	1.1	24.60	0.10	2.9
					63	13	14	63	9.08	9	1.4	24.30	0.11	5,4
					95	13	46	32	8.85	13	1.2	24.10	0.17	5.9
					127	14	18	32	<b>B.</b> 61	17	3.0	23.10	0.21	8.1
					162	14	53	35	8.43	21	2.1	23.40	0.20	9.7
	•				226	15	57	64	8.02	25	3.3	22.90	0.21	13.4
		3	1930	0.14	0	12	11	0	9.29	6	1.3	25.00	0.13	2.8
				-	63	13	14	63	9.01	10	2.4	24.80	0.09	4.1
					95	13	46	32	8.74	14	1.3	24.80	0.14	5.4
					127	14	18	32	. 8.53	18	2.0	24.30	0.10	6.7
					162	14	53	35	8.39	22	3.0	24.30	0.11	8.0
					226	15	57	64	8.07	26	2.2	23.70	0.09	13.2
								- •			_ , _			

STATION	DATE	CORE NO.	CORE Vol (ML)	CORE H20 HEIGHT (M)	TIME SUM (min)	T Si Hr	IME OF Ample Min	DELTA TIME (min)	DD (MG/1)	AA VIAL ND.	NH4 (uH-N)	ND3+ND2 (um-n)	DIP (un-P)	SI (DH) 4 ) (um-SI)
WIND HIL	3-MAY-86	BL			0	19	48	0	9.59	29	0.7	78.60	0.53	23.8
					29	20	17	29	9.53	33	0.6	78.70	0.51	25.2
					60	20	48	31	9.48	37	0.5	77.30	0.53	23.9
<u>م</u> ر (	`a ↓				89	21	17	29	9,41	41	1.6	78.10	0.49	24.5
					120	21	48	31	9.39	45	0.6	61.40	0.50	20.2
					180	22	48	60	9.32	49	0.5	78.30	0.48	23.9
		1	2000.	0.14	0	19	48	0	9.56	30	1.2	77.90	0.53	23.8
					29	20	17	29	9.38	34	1.6	75.80	0.55	26.0
					60	20	48	31	9.15	38	0.9	76.90	0.64	25.7
					89	21	17	29	8.92	42	1.2	75.00	0.67	29.3
					120	21	48	31	8.71	46	1.6	76.30	0.74	29.2
					180	22	48	60	8.21	50	2.7	74.70	0.85	31.3
		2	1940	0.14	0	19	48	0	9.67	31	0.6	77.10	0.49	25.2
					29	20	17	29	9.49	35	0.6	74.70	0.47	25.3
					60	20	48	31	9.32	39	0.6	77.30	0.51	23.5
					89	21	17	29	9.17	43	0.9	76.70	0.97	26.0
					120	21	4B	31	9.01	47	0.8	76.10	0.53	26.1
					180	22	48	60	8.77	51	2.7	75.80	0.57	27.1
		3	2160	0.16	0	19	48	0	9.66	32	0.4	77.90	0.49	23.4
					29	20	17	25	5.41	36	- 0.6	76.70	0.49	24.5
		. *			60	20	48	31	9.22	40	0.5	77.00	0.49	25.0
					89	21	17	29	9.06	44	0.5	77.80	0.55	24.7
					120	21	48	31	8.90	48	0.7	75.10	0.50	25.3
					180	22	48	60	8.55	52	0.9	75.80	0.50	28.4

STATION	DATE	CORE NO.	CORE VDL (ML)	CORE H2D HEIGHT (M)	TIME SUM (min)	T S Hr	IME OF AMPLE MIN	DELTA TIME (min)	D0 (M6/1)	AA VIAL ND.	NH4 (uM-N)	N03+N02 (uH-N)	DIP (un-P)	SI (DH) 4 ) (uH-SI)
RAG PT	6-MAY-86	BL			0	12	23	0	7.28	160	3.0	27.50	0.10	1.4
					46	13	9	46	7.31	163	2.7	27.50	0.10	3.5
					86	13	49	40	7.34	167	2.5	27.20	0.09	1.8
					124	14	27	38	7.32	171	3.2	27.30	0.10	0.5
					166	15	- 9	42	7.35	175	3.5	27.50	0.11	1.3
					250	16	33	B4	7.41	179	3.7	27.50	0.11	0.8
		1	1890	0.14	0	12	23	0	7.15	159	5.3	26.80	0.12	2.8
					46	13	9	-46	6.61	164	7.6	25.80	0.13	5.8
					86	13	49	40	6.17	168	10.3	25.00	0.16	6.7
· · ·		•			124	14	27	38	5.70	172	12.4	24.40	0.19	B.7
					166	15	9	42	5.26	176	15.8	23.30	0.20	13.5
					250	16	33	84	4.25	180	22.9	21.20	0.27	16.2
		2	1820	0.13	0	12	23	0	6.83	158	6.0	26.80	0.11	4.2
					46	13	9	46	6.25	165	7.9	26.50	0.19	6.6
					B6	13	. 49	40	5.87	169	9.8	26.00	0.14	9.3
					124	14	27	3B	5.51	173	11.8	25.70	0.15	9.7
					166	15	9	42	5.13	177	14.0	25.30	0.19	13.9
					250	16	33	84		181	17.2	24.50	0.15	18.7
		3	1880	0.14	0	12	23	0	7.43	157	5.1	27.20	0.14	2.9
					46	13	9	46	0.56	166	7.1	26.30	0.10	5.5
					86	13	49	40	6.05	170	B.4	26.00	0.16	6.8
					124	14	27	38	5.57	174	10.5	25.90	0.16	8.4
					166	15	. 9	42	5.11	178	11.6	25.40	0.15	9.7
					250	16	33	- 84	4.06	162	3.5	27.80	0.13	1.8

STATION	DATE	CORE NO.	Core Vol (ML)	CORE H20 HEIGHT (H)	TINE SUM (min)	T S HR	INE OF ANPLE MIN	DELTA TIME (min)	DD (MG/1)	AA VIAL ND.	NH4 (uN-N)	NO3+NO2 (um-N)	DIP (um-P)	SI (OH) 4 ) (um-SI)
ND PT		RI		ب بین کر میں ہیں جو میں میں د	 D			0	7.31	183	3.3	81.30	0.45	11.3
34 <b>6</b> 7 1 1	/ 101 00	2			68	12	24	68	7.33	189	3.9	80.80	0.25	11.7
i.					100	12	56	32	7.31	193	3.4	80.80	0.14	11.3
×.	5				133	13	29	33	7.39	197	3.7	80.70	1.17	11.9
	141			•••	173	14	9	40	7.41	201	3.2	80.70	0.15	11.3
					241	15	17	68	7.52	205	3.5	80.40	0.13	13.5
		1	1845	0.13	. 0	11	16	0	7.51	1B4	3.6	B0.20	0.27	11.7
		_			68	12	24	68	6.97	190	4.9	79.70	0.18	14.0
					100	12	56	32	6.75	194	4.7	79.60	0.21	14.3
					133	13	29	33	6.56	198	5.7	79.50	1.14	14.9
					173	14	9	40	6.28	202	5.7	79.20	0.25	15.9
					241	15	17	68	5.87	206	6.0	79.00	0.26	17.1
		2	1825	0.13	0	11	16	0	7.40	185	4.2	79.00	0.18	12.2
					68	12	24	68	6.87	191	6.2	79.30	0.21	14.6
					100	12	56	32	6.67	195	6.8	79.BO	0.25	15.1
					133	13	. 29	33	6.52	199	7.3	79.70	0.23	16.3
					173	14	9	40	6.31	203	7.3	79.60	0.24	16.7
					241	15	17	68	3 <b>.9</b> 3	207	. 7.9	79.30	0.26	19.2
		3	1955	0.14	0	11	16	0	7.58	186	3.7	80.30	0.20	12.1
			_		68	12	24	68	7.15	192	4.9	79.70	0.20	14.5
					100	12	56	32	6.99	196	4.8	79.70	0.20	14.3
					133	13	29	33	6.81	200	5.2	79.70	0.24	14.6
					173	14	9	40	6.59	204	5.5	79.70	0.22	15.3
					241	15	17	68	6.20	208	6.0	79.30	0.22	17.3

STATION	DATE	CDRE NO.	CDRE VDL (ML)	CDRE H20 HEIGHT (N)	TIME SUM (min)	t S Hrr	IME OF AMPLE HIN	DELTA TIME (min)	DO (MG/1)	AA VIAL ND.	NH4 (uH-N)	NO3+ND2 (um-N)	DIP (uM-P	SI(DH)4 )(uM-SI)
PT NO PT	5-MAY-86	BL			0	17	38	0	9.48	125	2.1	26.20	0.08	0.8
					62	18	40	62	9.42	133	2.8	26.40	0.0B	0.5
	•				124	19	42	62	9.44	141	2.4	26.30	0.08	0.5
				<b>.</b> .	171	20	29	47	9.35	145	2.0	26.40	0.06	0.7
					226	21	24	55	9.32	149	2.7	26.30	0.07	1.4
					286	22	24	60	9.28	153	3.5	26.40	0.11	0.8
		1	1 <b>B</b> 20	0.13	0	17	38	0	9.07	126	2.5	26.00	0.10	3.2
					62	18	40	62	8.59	134	3.0	25.60	0.09	5.2
					124	19	42	62	8.23	142	3.5	25.30	0.09	6.7
•					171	20	29	47	7.97	146	4.3	25.10	0.09	7.7
					226	21	24	55	7.72	150	3,4	24.90	0.09	9.1
					286	22	24	60	7.47	154	4.8	24.80	0.12	10.5
		2	1730	0.12	0	17	38	0	8.94	127	2.8	25.80	0.09	3.9
					62	18	40	62	8.36	135	4.0	25.50	0.13	5.B
					124	19	42	62	7.91	143	4.1	25.20	0.69	7.8
					171	20	29	47	7.64	147	5.1	25.00	0.11	8.8
					226	21	24	55	7.31	151	5.4	24.70	0.10	9.9
					286	22	24	60	7.04	155	5.4	24.40	0.10	11.4
	•	3	1810	0.13	0	17	38	0	8.97	128	2.7	25.70	0.12	3.B
					62	18	40	62	8.35	136	3.4	25.30	0.10	5.6
					124	19	42	62	7.93	144	4.5	24.90	0.10	7.7
					171	20	29	47	7.64	14B	4.1	24.70	0.11	9.1
					226	21	24	55	7.31	152	4.6	24.40	0.07	10.0
					286	22	24	60	7.00	156	5.0	24.20	0.11	11.1

STATION	DATE	CDRE ND.	CORE Vol (ML)	CORE H20 HEIGHT (M)	TIME SUM (min)	T S HR	IME OF Ample Min	DELTA TIME (min)	D0 (M6/I)	AA VIAL NO.	NH4 (uH-N)	ND3+ND2 (uH-N)	DIP (um-P)	SI (DH) 4 ) (un-si)
R-64	5-MAY-86	BL			0	13	17	0	6.09	107	5.9	19.70	0.08	3.4
					60	14	17	60	6.10	111	5.7	19.90	0.10	3.4
					156	15	53	96	6.17	116	5.7	19.70	0.08	3.2
	star i tak				216	16	53	60	6.23	121	5.3	19.70	0.09	3.2
					290	18	7	74	6.28	129	5.9	19.70	0.08	3.3
					358	19	15	68	6.31	137	6.0	19.60	0.09	3.2
		1	1880	0.14	0	13	17	0	5.97	108	7.9	19.70	0.19	6.9
					60	14	17	60	5.65	112	9.1	19.00	0.25	11.4
					156	15	53	96	5.17	117	12.7	18.50	0.28	16.8
					216	16	53	60	4,91	122	13,8	18.00	0.27	19.4
					290	18	7	74	4.57	130	15.1	17.50	0.28	22.7
					358	19	15	68	5.32	138	19.1	17.10	0.28	25.4
		2	1655	0.12	0	13	17	0	5.97	109	6.B	19.40	0.11	6.8
					60	14	17	60	5.76	113	8.3	19.00	0.12	10.7
					156	15	53	96	5.42	118	9.6	18.40	0.11	15.5
					216	16	53	60	5.24	123	10.1	17.90	0.14	18.3
					290	1B	7	74	4.99	131	11.1	17.30	0.21	21.5
					358	19	15	68	4.84	139	12.3	16.90	0.13	24.1
		3	1960	0.14	0	13	17	0	6.38	110	8.7	19.50	0.36	9.3
					60	14	17	60	6.22	114	- 11.5	19.10	0.34	13.5
					156	15	53	96	6.10	119	14.4	18.30	0.27	19.3
					216	16	53	60	5.70	124	16.2	17.70	0.23	21.8
					290	18	7	74	5.59	132	18.4	17.10	0.23	25.4
					358	19	15	68	5.59	140	iB.7	16.70	0.25	27.7

STATION	DATE	CORE NO.	CDRE Vol	CORE H2D HEIGHT	TIME Sun	TI S/	INE OF	DELTA TIME	DO	AA VIAL	NH4	ND3+ND2	DIP	SI (DH)4
			(ML)	(#)	(min)	HR	MIN	(min)	(MG/1)	NO.	(uH-N)	(uM-N)	(uM-P)	(uM-SI)
R-78	4-MAY-86	BL			0	12	36	0	1.89	55	12.4	18.40	0.10	10.0
					60	13	36	60	2.03	59	12.6	18.50	0.10	10.0
					158	15	14	98	2.38	64	12.6	18.30	0.08	9.9
					226	16	22	68	2.56	73	12.8	18.60	0.10	9.5
					283	17	19	57	3.00	85	12.5	1 <b>B.4</b> 0	0.09	9.7
					345	18	21	62	3.42	<del>9</del> 7	12.8	18.50	0.10	9.5
		1	2000	0.14	0	12	36	0	2.16	56	12.3	18.30	0.11	9.9
					60	13	36	60	2.12	60	13.3	17.70	0.11	10.8
					158	15	14	98	1.96	65	13.9	16.90	0.10	13.5
					226	16	22	68	2.07	74	13.0	16.50	0.1B	13.1
					283	17	19	57	1.99	86	12.9	15.90	0.09	13.2
·					345	18	21	62	1.83	- 98	13.2	15.50	0.11	13.9
		2	2180	0.16	0	12	36	0	2.25	57	12.9	18.90	0.15	10.6
					60	13	36	60	2.49	61	13.3	18.30	0.19	11.5
					158	15	14	- 98	2.71	67	13.2	17.B0	0.47	13.1
					226	16	22	68	2.77	75	13.6	17.40	0.13	13.3
					283	17	19	57	2.B2	B7	13.3	17.30	0.14	14.0
					345	18	21	62	2.81	99	14.0	16.90	0.13	14.8
		3	2090	0.15	0	12	36	0	2,45	58	12.6	18.30	0.11	9.9
					60	13	36	60	2.62	62	12.3	18.00	0.09	10.3
					158	15	14	98	2.79	68	12.1	17.40	0.08	10.8
					226	16	22	68	2.87	. 76	14.4	17.10	0.11	10.9
					283	. 17	19	57	2.87	88	12.6	16.70	0.10	11.7
			,		345	18	21	62	. 2.88	100	12.8	16.30	0.12	11.9

STATION	DATE	CORE NO.	CDRE Vol (ML)	CORE H20 HEIGHT (M)	TIME SUM (min)	T S HR	INE OF Anple Min	DELTA TIME (min)	D0 (MG/1)	AA VIAL ND.	NH4 (uH-N)	ND3+ND2 {uH-N}	DIP (um-P)	SI (OH) 4 ) (uM-SI)
STIL PD	4-MAY-86	BL		<b></b>	0	 15	 40	0	8.74	69	4.9	75.40	0.38	48.4
					55	16	35	55	8.72	. 77	5.2	73.70	0.37	43.9
ŝ					86	17	. 6	31	8.72	81	4.8	75.20	0.36	47.9
	1.				116	17	36	- 30	8.69	89	5.0	75.10	0.36	47.7
					146	1B	6	30	8.70	93	5.0	75.30	0.37	46.7
-					219	19	19	73	8.68	101	4.8	75.50	0.37	46.3
		1	1810	0.13	0	15	40	0	8.42	70	6.3	72.70	0.36	43.0
					55	16	35	55	7.B1	78	8.8	73.30	0.37	46.5
		•			86	17	6	31	7.55	82	B.4	72.60	0.37	45.9
					116	17	. 36	- 30	7.30	90	9.0	72.20	0.40	48.8
					146	18	6	30	7.08	94	9.6	72.60	0.39	43.9
					219	19	19	73	6.55	102	10.8	72.00	0.42	48.5
		2	1935	0.14	0	15	40	0	8.55	71	5.8	73.60	0.37	46.1
					55	16	35	55	7.98	79	7.8	74.20	0.40	48.7
					86	17	6	31	7.70	B3	7.5	71.10	0.39	47.1
					116	17	36	30	7.45	91	7.B	72.40	0.42	48.9
					146	18	. 6	30	7.16	95	8.4	72.80	0.41	48.9
					219	19	19	73	6.69	103	9.1	71.60	0.40	52.8
		3.	1980	0.14	0	15	40	0	8.76	72	6.3	74.30	0.37	40.4
					55	16	35	55	8.38	80	- 6.4	74.30	0.35	48.3
					86	17	6	- 31	8.17	84	6.8	73.40	0.38	49.1
					116	17	36	30	7.97	92	7.0	73.30	0.35	50.2
					146	18	6	30	7.81	96	7.6	71.90	0.36	49.6
					219	19	19	73	7.44	104	8.4	66.40	0.41	48.2

			, ago dia dia 490 any am				in an in in it in it, ga ga an i	, <del></del> .		و در مراجع می براند ا	P			
STATION	DATE	CORE NO.	CORE VOL (ML)	CORE H20 Height (m)	TINE (SUM)	HR	TIME OF SAMPLE MIN	DELTA TIME (min)	D0 ( (M6/L)	ND.	NH4 (uM-N)	N03+N02 (um-N)	DIP (um-P)	SI (OH) 4 (un-si)
SONE 8 ST.LEO	26-JUNE-86													
DITLED		-			0	1	B 52	0	5.97	208	6.0	1.66	0.08	61.4
	New York				38		9 30	38	5.98	214	5.7	1.66	0.10	61.9
					68	1	0 0	30	5.98	218	5.1	1.43	0.07	61.5
					98	1	0 30	30	6.01	224	5.2	1.43	0.06	61.3
					138	1	1 10	40	6.09	232	5.0	1.67	0.09	63.5
					198	<b>1</b>	2 10	60	6.15	244	6.7	1.40	0.08	61.2
•		1	2140	0.15	0		8 52	0	6.74	209	4.4	1.34	0.11	67.2
	•				38		9 30	38	6.12	215	5.9	1.48	0.11	63.0
					68	1	0 0	30	5.68	219	5.6	1.41	0.10	· 66.9
					98	1	0 30	30	5.36	225	6.2	1.52	0.08	67.2
					13B	i	1 . 10	40	4.93	233	6.7	1.59	0.10	71.5
					198	1	2 10	60	4.42	245	8.2	1.80	0.10	71.0
		2	1960	0.14	0		B 52	0	6.1B	210	5.4	1.43	0.09	64.7
					38		9 30	38	5.56	216	6.3	1.57	0.11	65.3
					68	1	0 0	30	5.10	220	7.4	1.58	0.24	69.B
					98	1	0 30	30	4.71	226	7.7	1.64	0.09	68.7
					138	1	1 10	40	4.21	234	8.5	1.76	0.13	73.8
					198	1	2 10	60	3.63	246	9.7	1.95		73.4
		3	2190	0.16	0		8 52	0	6.57	211	4.7	1.39	0.10	64.4
					3B		9 30	38	5.89	217	6.2	1.59	0.12	66.2
					68	1	0 0	30	5.45	221	7.4	1.58	0.11	68,3
					98	1	0 30	30	5.10	227	7.6	1.59	0.18	68.4
					138	1	1 10	40	4.55	235	8.7	1.82	0.13	74.7
					198	1	2 10	60	3.97	247	10.0	1.92	0.18	73.7
### BIDMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrint and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE NO.	CDRE Vol (ML)	CORE H20 Height (M)	time (Sum)	HR	TINE OF Sanple Hin	DELTA TIME (min)	DD (M6/L)	AA VIAL ND.	NH4 (uM-N)	ND3+ND2 (uH-N)	DIP (um-P)	SI (OH) 4 (um-si)
BU.VISTA	26-JUNE-86	B	, <del></del>					~	E DI			A 83	4 47	78 (
	•				U	11	. U 70	U 30	J. 74 5 D.	228	2.3	1 00	1.17	20.1
					20	11	-30	30	0.74 E 01	230	2.3	1.00	1.7/	70 7
					00	12	0 07	30 70	5 05	240	217	0.73	1 23	79.3
					120	17	30 0	30 70	5.94	252	2.2	0.97	1.28	79.6
					180	14	0	60	5.98	256	3.0	1.01	1.24	81.5
		1	1950	0.14	0	11	0	0	5.34	229	1.6	0.86	1.33	79.1
					30	- 11	30	30		237	3.2	0.78	1.28	81.7
•					60	12	0	- 30	5.24	241	5.4	1.34	1.58	85.6
					90	12	30	30	4.81	249	6.1	1.58	1.73	86.9
	·				120	13	0	30	4.49	253	6.4	1.34	1.58	91.0
					180	14	0	60	3.87	257	9.8	2.09	1.86	92.4
		2	1900	0.14	0	11	0	. 0	6.05	230	2.9	1.01	1.24	81.5
					- 30	11	30	30	5.35	238	3.2	1.06	1.28	81.2
					60	12	0	30	4.75	242	5.4	1.50	1.53	87.1
					90	12	30	30	4.65	250	7.4	1.85	1.69	90.2
					120	13	0	30	3.94	254	B.2	1.81	1.90	91.1
					180	14	0	60	3.22	258	12.6	2.32	2.13	94.8
		3	1980	0.14	ν	11	0	0	6.12	231	2.6	1.02	1.30	31.8
					30	. 11	30	) 30	5.53	239	4.1	1.16	1.40	84.1
					- 60	12	C	30	5.06	243	5.6	1.39	1.56	84.9
					90	12	- 30	) 30	4.30	251	7.4	1.43	1.69	90.9
					120	13	0	) . 30	4.32	255	8.5	1.67	1.87	90.2
					180	14	0	) 60	3.60	259	11.5	5 2.12	2.12	94.9

## BIDMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDELUX (Nutrint and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CDRE NO.	CORE Vol (ML)	CORE H20 HEIGHT (N)	time (Sum)	HR	TIME DF SAMPLE HIN	DELTA TIME (min)	D0 (M6/L)	AA VIAL ND.	NH4 (uM-N)	ND3+ND2 (uH-N)	DIP (um-P)	SI(OH)4 (um-si)
HORN PT	25-JUNE-86	B							7 44	151	م ۲	A 11	0 17	11 1
					V 77	14		ט דד י	7 11	130	V./	0.10	0.13	61.0
	and the second sec				22	11	1 10 5 10		7 10	102	1 1	0.18	0.13	59.7
	1. <b>*</b> **				0V 0A	11	5 A0	27	7.10	170	0. R	0.15	0.14	60.3
					120		5 40 6 10	۰۰ ۲۵	7 10	175	0.8	0.19	0.13	59.1
					185	1	7 15	65	7.11	188	1.0	0.20	0.14	58.8
		т. 1	1830	0.13	0	14	4 10	0	6.89	157	1.3	0.26	0.14	63.4
					33	1	4 43	33	٤.29	163	2.3	0.42	0.17	64.4
					60	1	5 10	27	5.86	167	3.1	0.62	0.19	68.7
					90	1	5 40	) 30	5.43	171	4.0	0.67	0.20	. 71.3
					120	1	6 10	) 30	5.06	176	4.9	0.76	0.20	70.5
					185	1	7 15	5 65	4.23	189	7.0	1.10	0.24	78.8
		2	1770	0.13	0	1	4 10	) 0	6.78	158	1.8	0.47	0.19	63.B
					33	1	4 43	5 33	6.05	164	3.5	0.42	0.24	66.5
					60	1	5 10	) 27	5.51	168	4,4	0.67	0.26	70.5
					90	1	5 40	) 30	4.98	172	5.8	0.81	0.29	74.0
					120	1	6 10	) 30	4.53	177	6.5	0.91	0.30	/3.1
					185	i	7 1	5 65	3.62	190	8.7	1.18	0.33	B1.3
		3	1740	0.13	0	1	4 1	) ()	6.72	159	- 1.7	0.2/	0.16	65.6
					33	1	4 43	3 33	6.10	165	3.0	0.53	0.19	65.5
					60	1	5 10	0 27	5.67	169	3.1	0.65	0.19	69.6
					90	1	5 4	0 30	5.30	173	4.	0.87	0.21	/1.2
					120	1	6 1	0 30	5.03	178	4.5	0.92	0.20	) /2.8
					185	i 1	7 1	5 65	4.29	191	. 6,	1.26	0.23	80.2

# BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SOME) SEDFLUX (Nutrint and oxygen concentrations in the sediment microcosms at SOME stations)

STATION	DATE	CORE No.	CDRE Vol (ML)	CORE H2D HEIGHT (H)	TINE (SUM) H	R T T S	INE OF Sample Hin	DELTA TIME (min)	D0 ( (M6/L)	AA VIAL NO.	NH4 (uH-N)	ND3+ND2 (um-N)	DIP (um-P)	SI (DH) 4 (um-SI)
WIND HILL	25-JUNE-84	B.			0	16	30	0	6.10	180	1.6	11.30	1.55	62.0
WIND HINDS	20 00/12				30	17	0	30	6.10	184	1.2	11.20	1.58	59.7
	•				60	17	30	30	6.13	192	1.5	11.10	1.55	64.0
					90	18	0	30	6.12	196	1.5	10.50	1.47	63.5
					120	18	30	30	6.12	200	1.4	11.20	1.53	65.3
					180	19	30	60	6.12	204	3.6	11.40	1.74	62.0
		. 1	1950	0.14	0	16	30	0	5.91	181	3.2	11.10	1.62	67.3
		•	1.00		30	17	0	30	5.46	185	5.4	11.20	1.69	67.5
					60	17	30	30	5.16	193	7.0	11.50	1.76	72.1
•					90	1B	(	) 30	4.86	197	8.6	11.60	1.81	72.7
	•				120	18	- 30	) 30	4.60	201	9.1	11.60	1.85	i 76.7
					150	19	• (	) 3(	4.01					
					180	.19	30	30	4.09	205	12.6	12.70	2.27	80.8
		,	1790	0.13	0	16	. 30	) (	6.00	182	3.6	5 11.20	1.72	66.9
		4	1110		30	17		) 3(	5.63	186	5.3	5 11.30	1.70	67.2
					60	17	3	0 3	5.01	194	5.	9 11.40	1.7	69.3
					90	18	3 1	0 30	4.62	198	8.0	0 11.80	1.8	3 74.7
*					120	18	3 3	0 3	4.30	202	8,1	7 11.80	1.9	5 77.3
	•				180	19	7 3	0 6	3.72	206	13.	6 12.10	2.1	2 74.6
		-	10/4	A 17	Λ		ι <b>τ</b>	ň	0 8:00	187	5.	1 11.20	1.6	3 67.7
		ప	1990	V.13	V ۲۸	11	, J 7	י ה ז	0 5.45	187	4.	6 11.30	1.7	4 68.0
					20 20	11	י ד ד	ο Λ τ	0 5.12	19	5.	9 11.50	1.7	8 71.0
ι.					0V 0A	11	, J D	ν Γ Γ	0	190	7 5.	5 11.60	1.7	8 72.2
					7V 170	11	ים גר ס	0 T	∾ ∩ 4.83	20	5 6.	2 11.80	) 1.7	9 71.9
					120	. 10	. J						1 0	• 77

# BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SOME) SEDFLUX (Nutrint and oxygen concentrations in the sediment microcosms at SOME stations)

STATION	DATE	CORE NO.	CORE Vol (HL)	CORE H20 Height (M)	tine (Sun)	HR	TIME OF Sample Hin	DELTA TIME (min)	DD (M6/L)	AA VIAL ND.	NH4 (uH-N)	NO3+NO2 (uM-N)	DIP (um-P)	SI (DH) 4 (uM-SI)
RAG PT	23-JUNE-86	B			0	11	20	0	4.07	3	9.0	0.71	0.21	30.8
					40	12	0	40	4.26	1	8.9	0.69	0.20	37.4
	Č.	•			84	12	- 44	44	4.27	11	9.6		0.22	37.0
	- a			• •	135	13	35	51	4.16	1/	7.3	0.70	V.10	41.3
•					170	14	10	35	4.12	21		0.5/	V.14	37.3
•					220	15	i C	) 50	4.15	25	7.1	V.3/	0.13	40.7
		1	2360	0.17	0	11	20	) 0	4.00	4	14.9	0.79	0.72	41.4
		•	2000	••••	40	12	2 (	) 40	3.95		19.9	0.62	0. <b>B</b> 2	44.8
					B4	1	2 44	44	4.09	12	21.7	0.41	0.70	46.3
					135	1	3 35	5 51		19	25.2	0.38	0.76	47.7
					170	1	1	) 35	4.09	22	27.0	0.50	0.79	48.2
					220	1	5 (	) 50	3.91	26	29.2	0.44	0.89	49.5
		.7	1900	0 13	0	f.	20	) (	3.04	5	17.3	0.57	0.54	42.9
		4	1000	V. 10	40	ī	2 (	) <b>4</b> 0	2.54	9	22.	0.46	0.72	47.7
					84	1	2 4	44	2.01	13	28.6	0.41	0.87	48.5
					135	1	3 3	5 51	1.50	19	32.9	0.25	1.05	50.4
					170	1	4 10	0 35	1.42	23	37.	5 0.27	1.31	52.5
					220	1	5	0 50	) 1.30	27	41.4	0.24	1.51	53.2
		7	1740	A 17	Ň	1	1 2	0 (	3.32	ł	12.0	0.51	0.53	5 43.7
		3	1740	0.10	v ۱۸۰	1	2	0 4	)	10	) - 14.,	5 0.42	0.67	47.4
						1	2 1	4 4/	. 3.07	14	16.	1 0.41	0.69	49.8
					135	、 1	3 3	5 5	2.89	20	) 17.	3 0.39	0.7	2 51.5
					170	1	4 1	0 3	5 2.76	2/	1 19.	0.36	0.9	55.8
					220	1	5	0 5	0 2.61	- 21	20.	6 0.34	1.0	9 58.3

# BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrint and oxygen concentrations in the sediment microcosms at SONE stations)

7

STATION	DATE	CORE ND.	CORE Vol (ML)	CORE H2D HEIGHT (M)	TIME (SUN)	HR	TIME OF SAMPLE MIN	DELTA TIME (min)	D0 (M6/L)	AA VIAL NO.	NH4 (uM-N)	ND3+ND2 (uH-N)	: DIP (uH-P)	SI (DH) 4 (um-si)
MD PT	23-JUNE-86	B	****		0		15 25	0	5.29	29	4.7	24.40	1.17	38.4
	•				45		16 10	45	5.35	33	4.4	24.80	1.29	39.4
					85		16 50	40	5.39	37	4.1	25.00	1.31	40.2
					125		17 30	40	5.41	41	4.6	24.90	1.30	38.8
					170		IB 15	45	5.44	45	4.0	25.00	1.31	39.3
					230		19 15	60	5.51	49	4.0	24.70	1.30	37.5
		1	2180	0.16	0		15 25	i 0	4.92	30	4.7	24.20	1.33	42.4
					45		16 10	45	4.38	- 34	5.7	23.90	1.35	44.8
					85		16 50	40	3.95	- 38	5.9	24.20	1.44	47.4
					125		17 30	40	3.62	42	6.2	21.50	1.33	44.6
					170		18 15	45	3.32	46	7.6	23.70	1.43	50.3
					230		19 15	60	2.98	50	7.7	22.90	1.43	49.6
		2	2040	0.15	0		15 25	i 0	4.73	31	5.6	23.60	1.47	43.4
					45		16 10	) 45	3.21	35	6.4	23.40	1.42	45.0
					85		16 50	40	3.80	39	7.4	23.20	1.49	47.7
					125		17 30	) 40	3.45	43	7.9	22.50	1.49	49.1
					170		18 15	i 45	3.12	47	B.3	22.70	1.46	50.7
	•				230		19 15	i 60	2.72	51	8.9	22.30	1.48	52.4
		3	1980	0.14	0		15 25	i 0	4.85	32	5.4	23.70	1.38	43.3
					45		16 10	) 45	4.41	36	6.5	23.00	1.38	44.9
					85		16 50	) 40	4.11	40	6.5	22.90	1.42	46.9
					125		17 30	) 40	3.82	44	7.4	22.80	1.45	47.9
					170		18 15	5 45	i 3.50	48		23.00	1.50	49.9
					230		19 1	5 60	. 3.29	52	8.1	22.20	1.42	50.2

# BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrint and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE ND.	CORE Vol (ml)	CORE H20 HEIGHT (M)	tike (SUM) Hf	TI SA ?	ME DF Mple Min	DELTA TIME (min)	DO ( (MG/L)	ND.	NH4 (uH-N)	NO3+NO2 (uH-N)	DIP (um-P)	SI (DH) 4 (uM-SI)
PT NO PT	24-JUNE-86	 B			0	9	15	0	2.73	53	12.3	2.40	0.13	30.6
					45	10	0	45	2.80	59	12.1	2.19	0.12	29.5
	, Ng				105	11	0	60	2.92	63	12.0	2.24	0.12	27.0
	Sec. €			•	165	12	• 0	60	3.02	67		2.26	0.12	24.1
					235	13	10	70	3.12	77	12.2	2.72	0.13	20.1
					300	14	15	65	3.22	85	12.2	2.23	0.12	24.3
		1	2000	0.14	0	9	15	0	2.88	54	13.4	2.31	0.17	31.8
		. •	2000		45	10	0	45	2.88	60	13.6	2.24	0.22	35.3
					105	11	0	60	2.82	64	14.8	2.49	0.26	38.3
					165	12	0	60	2.78	6B	15.4	2.34	0.29	39.8
					235	13	10	) 70	2.65	78	17.4	2.35	0.35	46.6
					300	.14	15	5 65	2.54	86	19.1	2.39	0.37	50.2
		2	2075	0.15	0	9	15	5 0	2.84	55	13.0	) 2.24	0.19	32.9
		+	2075		45	10	. (	) 45	2.73	61	13.4	2.24	0.20	35.6
					105	11	(	) 60	2.50	65	14.8	3 2.18	0.24	38.8
					165	12	. (	0 60	2.37	65	16.0	2.14	0.25	i 41.4
					235	13	1(	0 70	2.22	79	17.1	5 2.11	0.29	? 44.4
					300	14	1	5 65	5 2.10	87	18.3	2.11	0.29	48.0
		7	2100	0.15	0	9	1!	5 (	2.87	58	13.3	3 2.17	0.14	32.0
		5	2100		45	10		0 4:	5 2.86	62	2 - 13.	3 2.22	0.19	7 34.6
					105	11	i	0 60	2.81	60	5 14.	0 2.18	0.2	38.3
					165	12	1	0 6	0 2.76	70	) 15.	1 2.14	0.23	3 41.9
					235	13	i	0 7	0 2.68	8	16.	2 2.21	0.2	6 . 44.1
					300	14	1	5 4	5 2.61	8	B 16.	3 2.18	0.2	6 45.1

BIDHONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrint and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE ND.	CORE Vol (ML)	CORE H20 HEIGHT (M)	tine (Sun)	HR	TIME OF Sample Min	DELTA TIME (min)	D0 (M6/L)	AA VIAL) No.	NH4 (uM-N)	NO3+NO2 (uM-N)	DIP (um-P)	SI (DH) 4 (um-SI)
R-64	24-JUNE-86	B		• • • • • • • • • • • • • • •	0	1	2 51	0	0.23	72	23.4	2.70	0.56	39.1
					- 69	1	4 0	69	0.37	81	32.1	2.70	0.56	38.7
		•			119	1	4 50	50	0.47	B9	32.1	2.68	0.55	40.6
				•	164	1	5 35	45	0.56	93	23.5	2.78	0.53	38.6
					224	- 1	6 35	60	0.99	97	23.B	2.69	0.57	38.9
					309	1	8 0	85		101	38.6	2.71	0.57	38.0
		1	1815	0.13	0	1	2 51	0		73	28.5	2.06	1.11	42.9
					69	1	4 0	69	0.44	82	33.9	1.77	1.62	49.4
					119	1	4 50	50	0.46	90	37.4	1.11	2.11	54.4
					164	1	5 35	45	0.44	94	41.0	0.90	2.49	58.4
					224	· 1	6 35	60	0.40	98	44.5	0.73	3.14	64.1
					309	1	B 0	B5	0.36	102	49.0	0.49	3.63	67.1
		2	1930	0.14	0	1	2 51	0		74	37.9	2.33	1.06	45.1
					69	1	4 0	69	0.63	83	33.1	2.00	1.79	51.9
					119	1	4 50	50	0.63	91	37.7	1.47	2.45	62.6
					164	1	5 35	45	0.60	95	51.3	1.29	2.85	63.4
					224	.1	6 35	60	0.55	99	43.4	1.10	3.44	71.9
					309	1	B 0	85	0.51	103	48.2	0.82	4.09	76.5
		3	1860	0.13	0	1	2 51	0		75	27.9	2.23	1.39	42.6
			•		69	1	4 0	69	0.71	84	23.B	1.59	2.51	47.3
					119	1	4 50	50	0.86	92	37.1	1.25	3.48	50.7
					164	1	5 .35	45	0.93	96	39.5	1.02	3.92	52.8
					224	1	6 35	60	0.91	100	31.2			44.7
					309	i	B O	- 85		104	39.3	1.11	3.45	50.6
									•					

# BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrint and oxygen concentrations in the sediment microcosms at SDNE stations)

	STATION	DATE	CDRE ND.	CDRE Vol (NL)	CORE H2D HEIGHT (N)	tine (Sun)	HR	TIME OF SAMPLE MIN	DELTA TIME (min)	D0 (M6/L)	AA VIAL ND.	NH4 (uN-N)	ND3+NO2 (um-N)	DIP (um-P)	SI (DH) 4 (uM-SI)
	R-78	24-JUNE-8	6 B			0	2	0 0	0	1.28	107	19.8	4.27	0.28	41.0
						60	- 2	1 0	60	1.40	111	19.9	4.32	0.27	40.7
		X.				120	2	20	60	1.52	115	19.7	4.21	0.26	41.5
. ~~		in the second				180	2	30	60	1.65	119	20.B	4.70	0.95	41.3
	. *					240	2	4 0	60		123	17.8	4.26	0.28	40.6
			1	2080	0.15	0	2	0 0	0	1.35	108	21.3	4.03	0.47	42.B
						60	2	1 0	60	1.33	112	23.4	3.55	0.66	46.0
						120	2	2 0	60	1.23	116	23.9	3.07	0.87	48.3
						180	2	3 0	60	1.09	120	27.8	2.73	1.34	50.6
						240	2	4 0	60	0.96	124	29.8	2.46	1.92	53.3
						300	2	50	60	0.86	127	32.1	2.06	2.04	54.1
			2	2340	0.17	0	2	0 . 0	0	1.99	109	20.6	<b>4.</b> 2B	0.40	42.9
						60	2	1 0	60	1.75	113	23.8	3.47	0.85	48.6
						120	2	2 0	60	1.53	117	26.2	3.02	1.29	53.0
						180	2	30	60	1.29	121	28.3	2.62	1.90	56.4
						240	2	<b>4</b> 0	60	1.08	125	28.8	2.02	1.86	58.0
						300	2	5 0	60	0.93	128	23.5	1.67	2.42	58.9
			- 3	2200	0.16	0	2	0 0	0	1.61	110	21.1	4.20	0.42	43.5
						60	ż	1 0	60	1.64	114	- 23.4	3.85	0.73	45.7
				÷ 1		120	2	20	60	1.61	118	25.3	3.27	0.93	48.0
						180	2	30	60	1.57	122	27.4	2.98	1.14	51.4
						240	2	<b>₽</b> 0	60	1.56	126	29.3	2.74	1.45	53.3
						300	2	5 0	60	1.52	129	31.4	2.49	1.60	53.8

BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGES(SONE) SEDFLUX (Nutrint and oxygen concentrations in the sediment microcosms at SONE stations)

STATION	DATE	CORE ND.	CORE Vol (ML)	CORE H20 HEIGHT (M)	time (Sum)	HR	TIME OF SAMPLE MIN	DELTA TIME (min)	D0 (M6/L)	AA VIAL NO.	NH4 (uM-N)	ND3+ND2 (um-n)	DIP (um-P)	SI (OH) 4 (uH-SI)
STIL PD	25-JUNE-86	B			0		9 45	0	6.67	130	4.3	54.90	0.66	53.3
	•				40	1	0 25	40	6.66	136	4.2	54.90	0.72	52.7
					75	i	1 0	35	6.66	140	5.1	55.00	0.70	51.7
				• . • .	105	1	1 30	30	6.67	144	4.1	55.00	0.69	51.5
					135	1	20	30	6.69	148	4.1	54.70	0.64	53.4
					195	1	3 0	60	6.71	152	4.0	55.10	0.66	53 <b>.</b> i
		1	1840	0.13	0		9 45	0	6.78	131	4.8	54.80	0.71	54.7
-					40	1	0 25	40	6.13	137	5.5	54.60	0.77	54.7
					75	1	1 0	35	5.55	141	6.8	54.80	0.83	57.1
					105	1	1 30	30	5.15	145	7.3	55.00	0.83	57.7
					135	1	20	30	4.86	149	7.5	55.00	0.87	58.7
					195	1	3 0	60	4.24	153	8,3	55.00	0.92	61.2
		2	1900	0.14	0		9 45	0	6.54	132	4.3	54.70	0.70	55.4
					40	1	0 25	40	5.93	138	4.7	54.60	0.71	56.0
					75	1	1 0	35	5.47	142	5.0	54.70	0.78	56.6
					105	1	1 30	- 30	5.14	146	4.8	54.70	0.73	55.3
					135	1	20	30	4.87	150	4.B	54.90	0.80	57.1
					195	1	3 0	60	4.28	154	4.7	55.00	0.84	56.8
		3	1300	0.09	0	(	7 45	0	6.51	133	5.1	54.70	0.74	53.3
					+0	1	25	40	5.92	139	5.7	54.40	0.78	55.1
					75	1	i 0	35	5.49	143	5.7	54.60	0.75	57.3
					105	1	1 30	30	5.19	147	6.3	54.80	0.79	57.4
					135	12	20	30	4.97	151	6.1	54.90	0.79	57.5
					195	1	50	60	4.50	155	6.6	54.80	0.84	58.7

LONG-TERM BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGE(SONE) SUMMARY SONEFLX(Summary of sediment-water exchanges expressed in units of mass/m2/time. SONE 5

					g02/∎2/d			ug-atN/m2/h		L	g-atN/#2/h	
	•		CORE		02 FLX	07 (1		NH4 FLX	NUL4 61		NO3 FLX	NO7 (1
STATION	DATE	NC	(m)	8	flux	aean	8	flux		a,	flux	mus fiux mean
ST.LED	22-AUG-85	1	0.22	-0.00250	-0.79	-0.77	0.00624	147.09	144.91	0.00198	26.15	43.00
		2	0.20	-0.00335	-0.96		0.00785	153.06		0.00247	29.64	
		- 3	0.20	-0.00193	-0.56		0.0062 <b>9</b>	134.29		0.00610	73.20	
BU.VISTA	22-AUG-86	1	0.22	-0.00193	-0.41	-0.70	0.01200	158.40	237.01	·		
		2	0.21	-0.00206	-0.62		0.02285	288.04				
		3	0.21	-0.00291	-0.88		0.02100	264.60				
HORN PT	21-AU6-85	1	0.21	-0.00232	-0.70	-0.92	0.01544	194.54	197.99	0.00265	33.39	29.61
		2	0.22	-0.00290	-0.92		0.01438	189.82		0.00197	25.96	
		3	0.22	-0.00364	-1.15		0.01599	209.62		0.00223	29.48	
WINDY HL	÷ '	1										
		2										
		3										
RAGGED P	19-AU6-85	1	0.22	-0.00380	-1.21	-1.42	0.01495	197.37	226.54	0.00363	47.91	29.35
		2	0.28	-0.00504	-2.03		0.01908	320.54		0.00239	40.15	
		3	0.20	-0.00360	-1.04		0.01348	161.71		0.00000	.00	
ND PT	19-AUG-85	1	0.22	-0.00506	-1.60	-1.19	0.02600	220.00	289.96	0.00321	25.36	21.73
		2	0.22	-0.00296	-0.94		0.01758	108.86		0.00317	24.88	
		3	0.22	-0.00329	-1.04		0.05032	541.03		0.00242	14.94	
PT.NO PT	20-AUG-85	1	0.21	-0.00136	-0.41	-0.52	0.01710	215.46	213.92	0.00000	0.00	-24.24
		2	0.23	-0.00154	-0.54		0.01568	216.39		-0.00360	-49.68	
		2	0.24	-0.00177	-0.61	$\sim$				-0.00160	-23.04	
R-64	20-AU6-85	1	0.22	-0.00127	-0.40	-0.68	0.02509	331.05	377.57	-0.00112	-14.73	-4.91
		2	0.17	-0.00388	-0.95		0.04531	462.16		0.00000	0.00	
		3	0.20			~~~~	0.02829	339.48		0.00000	0.00	
R-78	20-AU6-85	1	0.21	-0.00108	-0.33	-0.35	0.00787	99.19	82.65	0.00559	70.4B	37.27
		2	0.22	-0.00116	-0.37		0.00419	55.32		0.00313	41.32	
		3	0.22				0.00708	93.44		0.00000	0.00	
ITIL PD	21-AUG-85	1	0.22	-0.00250	-0.79	-0.68	0.00690	91.13	118.40	•		7,69
		2	0.23	-0.00160	-0.53		0.00552	76.22		0.00462	26.26	
		3	0.22	-0.00223	-0.71		0.01423	187.84		0.00199	-10.88	

5-1

LONG-TERM BIOMONITORING PROSRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE(SONE) SUMMARY BON LX(Summary of sediment-water exchanges expressed in units of mass/m2/time. BONL 5

•

			t	ug-atP/m2/h		u	g-atSi/m2/h	
				PO4 FLX	504 (1)		SI FLX	0: 11
STA DN	DATE	NÓ	a	flux	PU4 fiux mean	ū	flux	si flux mean
STLLEO	22-AUG-85	1	-0.00012	-1.58	-2.16	0.00000	0.0	0.00
		2	-0.00029	-3.44		0.00000	0.0	
		3	-0.00012	-1.46		0.00000	0.0	
SU. STA	22-AUG-86	1	-0.00056	-14.45	3.36			94.00
		2	0.00250	24.74				
		3	0.00052	-0.21		0.00667	84.0	
HOR PT	21-AUG-95	1	0.00020	2.52	-0.05	0.01640	206.6	350.88
		2	0.00008	1.06		0.02437	321.7	
_		2	-0.00028	-3.72		0.03972	524.3	
NINL. HL		1						
		2						
		3						
RAGGED P	19-AUG-85	1	0.00000	0.00	0.00	0.00000	0.0	0.00
		2	0.0000	0.00		0.00000	0.0	
-		2	0.00000	0.00		0.00000	0.0	
MD_PT	19-AUG-85	1			32.93			267.30
1		2	0.00250	33.00		0.02050	270.6	
		. 3	0.00249	32.87		0.02000	264.0	
PT. PT	20-AU6-85	1	-0.00011	-1.37	-3.07	0.04071	512.9	524.94
		2	0.00000	0.00		v.04366	602.5	
		- 3	-0.00055	-7.85		0.03190	459.4	
R 4	20-AUG-85	1	0.00050	3.08	26.86	0.03884	512.7	552.81
		2	0.00579	56.31		0.06527	665.8	
		2	0.00203	21.20		0.04000	480.0	
R , 9	20-AU <del>6</del> -85	1	-0.00064	-4.16	-4.15	0.02203	277.6	342.45
		2	-0.00285	-33.54		0.02540	335.3	
•		3	0.00151	25.26		0.03140	414.5	
STIL PD	21-AUG-85	1	0.00000	0.00	0.00	0.04260	562.3	247.58
		2	0.00000	0.00		0.01224	168.9	
		3	0.00000	0.00		0.00087	11.5	

LONG-TERM BIDMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE(SONE) SUMMARY SONEFLX(Summary of sediment-water exchanges expressed in units of mass/m2/time. SONE 6

				g02/a2/d		۱	ug-atN/m2/	'n	t	ig-atN/m2/	'n
		CORE	1	02 FLX	02 (1	<b>1</b>	NH4 FLX	1914 C1		NO3 FLX	107 11
STATION	DATE	NO (ca)	3	flux	mean		flux	MH4 flux mean	2	flux	NUS flux mean
ST.LEO	16-0CT-85	1 0.20	-0.00257	-0.58	-0.79	0.00579	81.48	77.48	0.00449	32.75	14.15
		2 0.20	-0.00365	-1.00		0.00997	118.39		0.00217	4.92	
		3 0.17	-0.00307	-0.70		0.00319	32.57		0.00223	4.79	
BU.VISTA	16-0CT-85	1 0.17	-0.00877	-1.99	-1.78	0.02138	218.08	188.60	0.00258	27.38	26.26
		2 0.17	-0.00601	-1.22		0.01325	135.15		0.00345	35.19	
		3 0.17	-0.01016	-2.23		0.02084	212.57		0.00159	16.22	
HORN PT	15-0CT-85	1 0.20	-0.00420	-1.05	-1.11	0.01823	248.25	230.74	0.00411	49.30	41.62
		2 0.21	-0.00423	-1.11		0.01238	186.96		0.00277	34.94	
		3 0.21	-0.00445	-1.18		0.01794	257.01		0.00322	40.61	
WINDY HL	15-007-85	1 9.17	-0.00810	-1.83	-2.15	0.01319	134.54	186.15	0.0081*	82.76	A9,73
		2 0.18	-0.00838	-2.01		0.01809	195.37		0.00934	100.92	
		3 0.18	-0.01068	-2.61		0.02116	228.53		0.00793	85.68	
RAGGED P	17-001-85	1 0.21	-0.00185	-0.84	-0.86	0.03211	404.59	409.21	0.00000	0.00	0.00
		2 0.19	-0.00214	-0.84		0.03448	393.07		0.00000	0.00	
		3 0.20	-0.00217	-0.89		0.03583	429.96		0.00000	0.00	
ND PT	17-0CT-85	1 0.22	-0.00672	-2.13	-2.07	0.04124	544.37	404.72	-0.00567	-87.96	-58.06
		2 0.23	-0.00582	-1.93		0.02102	290.08		-0.00226	-39.79	
		3 0.24	-0.00620	-2.14		0.02637	379.73		-0.00295	-51.42	
PT.NO PT	14-0CT-85	1 0.19	-0.00227	-0.78	-1.05	0.00874	81.40	72.83	0.00218	24,84	20.21
		2 0.22	-0.00311	-1.17		0.00896	97.09		0.00046	12.68	
		3 0.22	-0.00326	-1.22		0.00463	40.00		0.00175	23.11	anda Alian Alian
R-64	14-DCT-85	1 0.16	-0.00280	-1.44	-1.40	0.03737	358.75	348.12	-0.00079	-7.62	-13.52
		2 0.17	-0.00304	-1.58		0.03900	387.60		-0.00222	-22.55	
		3 0.19	-0.00089	-1.18		0.02614	298.00		-0.00090	-10.28	
R-78	14-0CT-85	1 0.19	-0.00025	-0.63	-0.74	0.01034	84,47	85.06	0,00000	50.62	52.39
		2 0.21	-0.00082	-0.96		0.00915	78.36		0.00000	55.94	
		3 0.19				0.01103	92.34		0.00000	50.62	
STIL PD	15-0CT-85	1 0.18	-0.00361	-0.99	-0.78	0.00556	97.19	68.83	-0.00126	-63.67	-45.43
		2 0.19	-0.00260	-0.66		0.00308	53.76		0.00158	-34.83	
		3 0.19	-0.00303	-0.78		0.00236	55.55		0.00132	-37.80	

LDNG-TERM BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGE(SONE) SUMMARY SONEFLX(Summary of sediment-water exchanges expressed in units of mass/m2/time. SONE 5

				ug-atP/m2/h			ug-atSi/a2/h	
				PO4 FLX		•	SI FLX	********
STATION	BATE	NC		£1v	PO4 flux		<i>,</i> ,	Si flux
				TIUX	mean	@ 	tiux 	1899U
ST.LED	16-0CT-85	1	0.00077	8.46	7.54	0.02121	254.5	268.28
		2	0.00068	7.44		0.02404	288.5	
		3	0.00072	6.72		0.02567	261.8	
BU.VISTA	16-0CT-85	1	0.00248	25.30	25.70	0.02948	300.7	280.43
		2	0.00159	16.17		0.02537	258.8	
		3	0.00349	35.63		0.02763	281.8	
HORN PT	15-0CT-85	1	0.00231	27.66	24.33	0.03218	394 7	TO7 #4
		2	0.00182	22.92		0.02818	755 1	JUL: 17
		3	0.00178	22.42		0.03223	406.1	
WINDY HE	15-907-85	,	0 00745	At 05	75 07	A A77A7		
	10 101 00	2	0 00787		33.73	0.03323	516.9	434.57
		7	0.00277 0.00270	JI.24 74 70		V. V4466	482.3	· .
		3	0.00214	34.70		0.04486	484.5	
RAGGED P	17-0CT-85	1	0.00000	0.00	1.73	0.03054	384.8	360.86
		2	0.00045	5.19		0.03122	355.9	
		3	0.00000	0.00		0.02849	341.9	
MD PT	17-0CT-85	1	0.00021	2.80	5.01	0.03590	607.2	487.55
		2	0.00051	7.08		0.01880	398.8	
	•	3	0.00036	5.17		0.02161	456.6	
PT.NO PT	14-0CT-85	1	0.00022	2,55	2.12	0 03076	350 7	. 700 #4
		2	0.00000	0.00		0 0324R	100.7	377.40
		3	0.00029	3.79	• • •	0.03174	419.0	
8-64	14-0CT-85	1	0.00070	£ 49	7 (0	A ALO/5	(50. 4	
		2	0.00082	8.79	1+14	0.00000	437.0	606.15
		3	0.00055	6.28		0.04589	523.1	
R-78	14-007-05	ŧ	0 00000	7 74	~ ~ ~ ~		· · · · · ·	·
	1 1 1 1 1 U	2	0.00000 0.00000	-2.71	V. V4	0.03135	357.4	276.00
		3	0 00037	1.72		0.01655	208.5	
•		J	v. vvv32	V.71		0.02299	262.1	
TIL PD	15-0CT-85	1	0.00000	0.00	1.28	0.01733	178.6	141.95
		2.	0.00034	3.85		0.01228	130.9	
		3	0.00000	0.00		0.01097	116.0	

LONG-TERM BIOMONITORING PROGRAM: SEDIMENT DAYGEN AND NUTRIENT EXCHANGE(SONE) SUMMARY SONEFLX(Summary of sediment-water exchanges expressed in units of mass/m2/time.

g02/m2/d

02 FLX

ug-atN/m2/h

NH4 FLX

STATION	DATE	No	CDRE DEPTH (m)
ST.LEO	8-MAY-86	1 2	0.1 0.1
		7	A 1

SONE 7

			DEPTH						
STATION	DATE	No	(m)	a 	flux	mean	3	flux	mean
ST.LED	8-MAY-96	1	0.14	-0.005160	-1.07	-1.14	0.003600	31.08	36.53
		2	0.15	-0.005910	-1.31		0.005070	46.51	
		3	0.16	-0.004540	-1.05		0.003340	32.01	
RIL VISTA	8-MAY-86	1	0.13	-0.019700	-3.45	-3.23	0.013800	90.86	92.48
		2	0.14	-0.018000	-3.40	2 C	0.014900	108.26	
		3	0.14	-0.015400	-2.84		0.011500	78.31	
HORN PT	3-HAY-86	1	0.14	-0.004440	-0.73	-0.92	0.005980	50.85	57.98
	• • •	2	0.13	-0.006430	-1.08		0.010300	83.36	
ан алан 1		3	0.14	-0.005550	-0.94		0.004770	39.74	
WIND HT	3-MAY-86	1	0. 14	-0.007520	-1.25	-0.99	0.007120	61.47	58.10
		2	0.14	-0.005010	-0.71		0.010000	83.74	
		2	0.16	-0.005990	-1.00		0.003120	29.09	
RAG PT	6-MAY-86	1	0.14	-0.012000	-2.44	-2.35	0.071000	546.60	389.57
And T		2	0.13	-0.010000	-1.97		0.046000	329.96	
		3	0.14	-0.013000	-2.52		0.040000	292.14	
MD PT	7-MAY-86	. 1	0.13	-0.006750	-1.46	-1.35	0.009880	78.69	89.56
		2	0.13	-0.005880	-1.28		0.014500	114.23	
		3	0.14	-0.005560	-1.33		0.008980	75,78	
PT NO PT	5-HAY-86	1	0.13	-0.005530	-0.91	-1.03	0.008420	66.15	64.95
		2	6.12	-0.006580	-1.05		0.009220	68.85	
		3	0.13	-0.006750	-1.13		0.007660	59.85	
R-64	5-MAY-86	1	0.14	-0.004810	-1.07	-0.81	0.029600	240.21	194.78
		2	0.12	-0.003210	-0.57		0.014300	102.16	
		3	0.14	-0.002820	-0.71		0.028600	241.97	
8-78	4-MAY-86	1	0.14	-0.000989	-1.10	-0.79			28.42
		2	0.16	0.001600	-0.61		0.003020	28.42	
		2	0.15	0.001240	-0.66				
STIL PD	4-MAY-86	5 1	0.13	-0.008410	-1.53	-1.43	0.020600	160.95	122.73
		2	0.14	-0.008520	-1.65		0.015000	125.29	
		3	0.14	-0.006040	-1.12		0.010100	81.96	

LONG-TERM BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGE(SONE) SUMMARY SON LX(Summary of sediment-water exchanges expressed in units of mass/m2/time.

_			nð	-atN/m2/h		ug	-atP/m2/h		ug	-atSi/a2/h	
			NO	IS FLX		РС	)4 FLX		SI	FLX	
ST ION	DATE	No	A	flux	nean	9	flux	æean	• •	flux	aean
ST.LEO	8-MAY-86	i	-0.006510	-45.75	-44.72	0,000000	1.29	1.96	0.031600	239.5	229.99
		2	-0.007370	-56.50		0.000095	2.25		0.031200	250.8	
		2	-0.004540	-31.91		0.000093	2.32		0.024700	199.7	
BLISTA	8-MAY-86	1	0.004530	35.98	41.77	0.000878	6.97	8.29	0.075800	502.0	603.80
		2	0.005890	50.85		0.001060	9.15		0.071700	619.0	
		3	0.004490	38.47		0.001020	8.74		0.068900	590.4	
HO PT	3-MAY-86	1	-0.007570	-65.22	-59.86	0.000260	2.21	1.91	0.024800	227.3	336.20
		2	-0.008150	-65.96		0.000564	4.56		0.046400	391.2	
		2	-0.005810	-48.40		-0.000125	-1.04		0.044900	390.1	
WI HIL	3-#AY-86	1	-0.014000	-120.86	-107.55	0.001840	18.17	11.15	9.041000	354.0	223.28
		2	-0.008510	-71.26		0.000500	6.41		0.011000	92.1	
—		3	-0.014000	-130.53		0.000688	8.89		0.024000	223.8	
RAG PT	6-MAY-86	1	-0.022000	-179.48	-110.96	0.000510	4.98	2.83	0.056000	456.9	412.37
· _ ·		2	-0.009350	-73.45		0.000448	3.52		0.058000	455.7	
		2	-0.009850	-79.93		0.000000	0.00		0.040000	324.6	
HD_PT	7-MAY-86	1	-0.004290	-8.04	-3.73	0.000457	3.64	10.23	0.021700	172.8	175.97
. —		2	-0.003530	-1.97		0.003260	25.58		0.024400	192.2	
		. 3	-0.003420	-1.18		0.000161	1.36		0.019300	162.9	. •7
PT 0 PT	5-MAY-86	1	-0.004230	-33.23	-37,00	0.000000	0.00	0.00	0.025000	.196.4	197.64
		2	-0.004880	-36.44		0.000000	0.00		0.026000	194.2	
- 		2	-0.005290	-41.33		0.000000	0.00		0.025900	202.4	
54	5-MAY-86	1	-0.007060	-57.29	-58.95	0.000210	1.70	0.22	0.051000	413.9	397.26
		2	-0.007120	-50.86		0.000291	2.08		0.047900	342.2	
. —		2	-0.008120	-68.70		-0.000368	-3.11		0.051500	435.7	
., 78	4-MAY-86	1	-0.008040	-69.41	-57.54	0.000000	0.00	0.00	0.011400	112.2	100.58
		2	-0.005460	-51.38		0.000000	0.00		0.011700	125.2	
		3	-0.005760	-51.94		0.000000	0.00		0.005550	64.4	
STIL PD	4-MAY-86	1	-0.004140	-32.35	-78.43	0.000280	2.19	1.56	0.018200	220.3	285.48
; <u> </u>	· · · · · · · ·	2	-0.009220	-77.01		0.000138	1.15		0.027200	310.7	
÷		3	-0.015520	-125.95		0.000165	1.34		0.030100	325.4	•

LONG-TERM BIOMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGE(SONE) SUMMARY SONEFLX(Summary of sediment-water exchanges expressed in units of mass/m2/time.

			BLA	NK		CORE 1			CORE 2					_
STATION	DATE	FLUX	SLOPE	R	SLOPE	R	HT,M	SLOPE	R	HT,M	SLOPE	R	, HT,M	
ST.LEO	26-JUNE-8	16 02	0.00078	0.948	-0.01200		0.15	-0 01300		0 14	-0.01700	·	·	•
		NH4	0.00750	-0.915	0.0170(	0.961	0.15	A 07100	A 000	0.14	0.01300	/ -0.994	· V.15	
		N03	0.00000	-0.513	0.00714	0.948	0.15	0.02100	) 0.772 ) 0.00L	0.14	V.VZOV(	/ V.783	0.10	
		P04	0.0000	-0.019	0.00000	) -0.405	0.15	0.00247	0.700	0.14	0.00236	1 0.73/	0.16	
		SI	-0.00010	-0.700	0.02400	0.800	0.15	0.05000	0.010	0.14	0.00030	1 0.714 N 0.007	0.15	
								0100000	V./1/	V. 17	0.03300	9.72/	V.15	
BU.VIST	A 25-JUNE-9	6 02	0.00023	0.944	-0.00860	0.964	0 14	-0 01500	-0 000	A 13	A 44444			
		NH4	0.00000	-0.567	0.04300	0 997	0.14 6 14	0.05500	0.000	V:14	-0.01400	-0.9/5	0.14	
		NO3	0.00000	0.548	0.00485	0.920	0.14	0.03300 0.00750	0.707	V. 19	0.04730	0.999	0.14	
		P04	0.00000	0.775	0.00307	0.998	0.14	0.00730	0.000	V.14	0.00399	0.787	0.14	
		SI	0.00000	0.048	0.07700	0.000	0 14	0.0010	0.772	0.14	0.00469	0.998	0.14	
					••••	V.//2	V.14	0.00100	0.952	V.14	0.0/400	0.957	0.14	
HORN PT	25-JUNE-B	5 02	0.00000	-0.102	-0.01400	-0.997	0 1T	-0 01490	-0 004	0 17	A A1364		<del>.</del>	
		NH4	0.00000	0.453	0.03100	0 999	0.13	0.0711070 0.07110	0.004	0.13	-0.01280	-0.791	0.13	
		NO3	0.00021	0.980	0.00435	A 999	0.10	0.03000	0.000	V.13	0.02380	0.988	0.13	
		P04	0.00000	0.058	0.00049	0.969	0.13	0.00366	0.777	0.10	0.00017	0.990	0.13	
		SI	-0.01500	-0.913	0.08700	0.970	0.13	0.00072	V.702 A 070	0.13	0.00033	0.927	0.13	
						v.,,v	0.10	V: V723V	V.7/7	0.13	0.08100	0.978	0.13	
WIND HILL	25-JUNE-9(	5 02	0.00000	-0.102	0.01100	-0.994	0 1 <b>4</b>	-0 01300	-0 000	A 17	A A4047		<del>.</del>	
		NH4	0.00000	0.605	0.05000	0 997	0 14	A 05700	-0.770 0.007	V.10 A 17	-0.00903	-0.9/8	0.13	
		N03	0.00000	0.068	-0.00819	0.930	0.14	0.03300 0.0570	V.70J	0.13	0.03200	0.950	0.13	
		P04	0,00000	0.539	0.00332	01700 0.970	0.14	0.00327	V.7/J	0.13	0.00600	0.93/	0.13	
		SI	0.00000	0.351	0.08000	0.993	0.14	0.00233	0.700	0.13	0.00130	0.93/	0.13	
					*******	VI 100	V117	V: V7300	9.772	0.13	0.03200	V. 754	0.13	
RAG PT	23-JUNE-86	02	0.00000	-0.102	-0.00035	-0.915	0 17	-0 01140	-0 000	0.17		A 000	· · · •	
		NH4	0.00000	0,286	0.06230	0.985	0 17	0.11000	0 991	0.13	-0.00327	-0.999	0.15	
		NO3	-0.00065	-0.832	-0.00152	0.852	0.17	-0 00140	0.004	V.13	0.03/90	0.993	0.13	
		P04	-0.00058	-0.831	0.00134	0.632	0.17	0.00140	0.784	0.13	-0.00068	-0.935	0.13	
		SI	0.00000	0.500	0.03770	0.958	0.17	0.00443	V.77/	0.13	0.00240	0.986	0.13	
					vivo,,,,	V. 750	V.17	V: 0437V	V.73/	0.13.	V.V645U	0,990	0.13	
ND PT	23-JUNE-86	92	0.00089	0.990	-0.00837	-0.997	0 1 <b>5</b>	-0 00077	-0.000	A 1E	0.00/ <b>0</b> 5	1 000		
		NH4	0.00000	-0.731	0.01330	0 944	0.10	0.00070	0.772	0,10	-0.00583	-0.988	0.14	
		NO3	0.00000	0.424	-0.00502	-0 974	0.10	-0.00510	V-7/7	V.13	0.01220	0.961	0.14	
		P04	0.00000	0.327	0.00048	0.077 0.077	0.14	0.00000	0.778	0.13	-0.00582	-0.951	0.14	
		SI	0.00000	-0.399	0.03290	0.070	0.10	0.00000	-0.018	0.15	0.00035	0.643	0.14	
				••••	******	V1 / LU	V.10	0.04020	.0.770	V.13	V. 03860	0,997	0.14	
PT NO PT	24-JUNE-86	02	0.00164	0.998	-0.00134	-0.994	ĵ) 1.#	-0 00750	-0 003	A 15	A	A 955	A / -	
		NH4	0.00000	0.033	0.01920	0.981	0.14	A A105A	0,772 0.000	V.13 A 15	-0.00090	-0.989	0.15	
		¥03	0.00000 -	0.494	0.00037	0.824	0 14	-0 00021	V:774	V.13 A 1=	V.VI//0	V.Y/5	0.15	
		P04	0,00000 -	-0.144	0.00044	0.020 0.020	9714 6 14	-V.00035 ·	-0.77/	V.13	0.00000	-0.036	0.15	
		SI	0.00000 -	0.029	0.06000	0.990	V+17 () 14	C#VVV.V	V.786	V.13	0.00037	0.998	0.15	
D / I	<b>54 1000 51</b>	~			*******	411/V	Vait	V. V907V	V.778	v.13	0.04780	0.983	0.15	
N-04	24-JUNE-86	UZ	0.00201	0.999	-0.00052	-0.996	0.13	-0.00054	-0.976	0.14	0.00128	0.846	0.13	
		8H4 .	0.00000	0.446	0.06700	0.996	0.13	0.06100	0.995	0.14	0.03850	0.652	0.13	
							5-7							

LONG-TERM BIDMONITORING PROGRAM: SEDIMENT OXYGEN AND NUTRIENT EXCHANGE(SONE) SUMMARY SONEFLX(Summary of sediment-water exchanges expressed in units of mass/m2/time.

DATE	FLUX				-LUKE 1-			-CORE 2-			-CORE 3-	
		SLOPE	R	SLOPE	R	HT,M	SLOPE	R	HT,M	SLOPE	R	HT,M
	NO3	0.00000	0.139	-0.00533	-0.958	0.13	-0.00500	0.974	0 14	-0 00742		0 17
	P04	0.00000	0.261	0.00848	0.996	0.13	0.00991	0.996	0 14	0.00742	A 005	0.10
	SI	0.00000	-0.772	0.09470	0.999	0.13	0.10500	0.980	0.14	0.06310	0.997	0.13
4-JUNE-86	02	0.00205	0,999	-0.00175	-0.985	0.15	-0.00359	-0.998	0.17	-0.00348	-0.902	0.16
	NH4	0.00000	-0.239	0.03700	0.986	0.15	0.03500	0.973	0.17	0.03400	0.999	0.16
	NO3	0,00000	-0.325	-0.00541	-0.995	0.15	-0.00847	-0.993	0.17	-0,00580	-0.997	0.16
	P04	0.00000	0.051	0.00576	0.991	0.15	0.00654	0.9B2	0.17	0.00394	0.996	0 14
	SI	0.00000	-0.083	0.03800	0.991	0.15	0.05300	0.961	0.17	0.03700	0.985	0.16
5-JUNE-86	92	-6.00024	-0.053	-0.01300	-0.992	0.13	-0.01100	-0 224	5 14	-1 01000	0.000	
	NH4	-0.00145	-0.982	0.01800	0.971	0.13	0.01100 A AAQ75	0,774 A 300	0.14	-0.01000 0.00700	····	0.97
	ND3	0.00109	0.962	0.00174	0.747	0.13	0.00104	V.777 0 050	V+14 0 14	0.00720	0.741	0.09
	P04	0.00000	-0.407	0.00104	0.980	0.13	0.00070	0.000	V-14 A 14	0.00268	0.792	0.09
	SI	0.00000	0.061	0.03500	0.70V	0.13	0.00072	0.701	V.14	0.00040	0.887	0.09
	4-JUNE-86	4-JUNE-86 02 NH4 N03 P04 SI 5-JUNE-86 02 NH4 N03 P04 SI SI	NG3   0.00000     P04   0.00000     SI   0.00000     4-JUNE-86   02   0.00205     NH4   0.00000   N03   0.00000     N03   0.00000   SI   0.00000     P04   0.00000   SI   0.00000     SI   0.00000   SI   0.00000     SI   0.00000   SI   0.00105     5-JUNE-86   02   -0.00145   N03   0.00107     P04   0.00000   SI   0.00000   SI   0.00000	NUS   0.00000   0.139     P04   0.00000   0.261     SI   0.00000   -0.772     4-JUNE-86   02   0.00205   0.999     NH4   0.00000   -0.237     N03   0.00000   -0.325     P04   0.00000   -0.325     P04   0.00000   -0.051     SI   0.00000   -0.053     NH4   -0.00145   -0.982     N03   0.00107   0.962     P04   0.00000   -0.407     SI   0.00000   0.061	NU3   0.00000   0.137   -0.00333     P04   0.00000   0.261   0.00848     SI   0.00000   -0.772   0.09470     4-JUNE-86   D2   0.00205   0.999   -0.00176     NH4   0.00000   -0.325   -0.00541     P04   0.00000   -0.325   -0.00541     P04   0.00000   -0.051   0.00576     SI   0.00000   -0.083   0.03800     5-JUNE-86   D2   -0.0024   -0.533   -0.01300     NH4   -0.00145   -0.982   0.01800     NH4   -0.00145   -0.982   0.01800     NO3   0.00109   0.962   0.00176     P04   0.00000   -0.407   0.00104     SI   0.00000   0.061   0.03500	N03 0.00000 0.139 -0.00533 -0.958   P04 0.00000 0.261 0.00848 0.996   SI 0.00000 -0.772 0.09470 0.999   4-JUNE-86 D2 0.00205 0.999 -0.00175 -0.995   NH4 0.00000 -0.239 0.03700 0.986   N03 0.00000 -0.325 -0.00541 -0.995   P04 0.00000 0.051 0.00576 0.981   SI 0.00000 -0.083 0.03800 0.991   5-JUNE-86 D2 -6.00024 -0.053 -0.01300 -6.992   NH4 -0.00145 -0.982 0.01800 0.971   ND3 0.00109 0.962 0.00176 0.747   P04 0.00000 -0.407 0.00104 0.980   SI 0.00000 -0.407 0.00104 0.980	N03 0.00000 0.137 -0.00533 -0.958 0.13   P04 0.00000 0.261 0.00848 0.996 0.13   SI 0.00000 -0.772 0.09470 0.999 0.13   4-JUNE-86 D2 0.00205 0.999 -0.00175 -0.995 0.15   NH4 0.00000 -0.239 0.03700 0.986 0.15   N03 0.00000 -0.325 -0.00541 -0.995 0.15   P04 0.00000 0.051 0.00576 0.981 0.15   SI 0.00000 -0.083 0.03800 0.991 0.15   5-JUNE-86 D2 -0.00024 -0.982 0.01300 -6.992 0.13   SI 0.00145 -0.982 0.01800 0.971 0.13   N03 0.00109 0.962 0.00176 0.747 0.13   P04 0.00000 -0.407 0.00104 0.980 0.13   SI 0.00000 0.661 0.03500 0.980 0.13	Nd3   0.00000   0.13   -0.00533   -0.958   0.13   -0.00500     P04   0.00000   0.261   0.00848   0.996   0.13   0.00991     SI   0.00000   -0.772   0.09470   0.999   0.13   0.10500     4-JUNE-86   D2   0.00205   0.999   -0.00175   -0.995   0.15   -0.00359     NH4   0.00000   -0.239   0.03700   0.986   0.15   0.03500     N03   0.00000   -0.325   -0.00541   -0.995   0.15   -0.00847     P04   0.00000   0.051   0.00576   0.981   0.15   0.005300     51   0.00000   -0.083   0.03800   0.991   0.15   0.05300     51   0.00145   -0.982   0.01300   -6.992   0.13   -0.01100     NH4   -0.00145   -0.982   0.01800   0.971   0.13   0.00935     N03   0.00109   0.962   0.00176   0.747   0.13   0.0072	N03 0.00000 0.137 -0.00533 -0.958 0.13 -0.00500 0.974   P04 0.00000 0.261 0.00848 0.996 0.13 0.00991 0.996   SI 0.00000 -0.772 0.09470 0.999 0.13 0.10500 0.996   4-JUNE-86 D2 0.00205 0.999 -0.00176 -0.995 0.15 -0.00359 -0.998   NH4 0.00000 -0.239 0.03700 0.986 0.15 0.03500 0.973   N03 0.00000 -0.325 -0.00541 -0.995 0.15 -0.00847 -0.993   P04 0.00000 0.051 0.00576 0.981 0.15 0.00654 0.982   SI 0.00000 -0.083 0.03800 0.971 0.13 -0.01100 -0.974   NH4 -0.00145 -0.982 0.01800 0.971 0.13 0.00935 0.999   N03 0.00109 0.962 0.00176 0.747 0.13 0.00186 0.858   P04 0.00000 0.061 0.03500 <td>Hd3 0.00000 0.139 -0.00333 -0.758 0.13 -0.00500 0.974 0.14   P04 0.00000 0.261 0.00848 0.996 0.13 0.00991 0.996 0.14   S1 0.00000 -0.772 0.09470 0.999 0.13 0.10500 0.996 0.14   4-JUNE-86 02 0.00205 0.999 -0.00176 -0.995 0.15 -0.00359 -0.998 0.17   NH4 0.00000 -0.239 0.03700 0.986 0.15 0.03500 0.973 0.17   N03 0.00000 -0.325 -0.00541 -0.995 0.15 -0.00847 -0.993 0.17   N03 0.00000 -0.325 -0.00576 0.991 0.15 0.00654 0.982 0.17   SI 0.00000 -0.083 0.03800 0.991 0.15 0.00100 -0.974 0.14   NH4 -0.00145 -0.982 0.01800 0.971 0.13 -0.01100 -0.974 0.14   SI 0.00104 -0.982 0.01800</td> <td>N03 0.00000 0.137 -0.00333 -0.758 0.13 -0.00500 0.974 0.14 -0.00742   P04 0.00000 0.261 0.00848 0.996 0.13 0.00991 0.976 0.14 0.01590   SI 0.00000 -0.772 0.09470 0.999 0.13 0.10500 0.9780 0.14 0.00310   4-JUNE-86 02 0.00205 0.999 -0.00176 -0.985 0.15 -0.00359 -0.978 0.17 -0.00348   NH4 0.00000 -0.239 0.03700 0.986 0.15 0.03500 0.973 0.17 -0.00348   N03 0.00000 -0.325 -0.00541 -0.995 0.15 -0.00847 -0.993 0.17 -0.00580   P04 0.00000 -0.083 0.03800 0.991 0.15 0.01100 -0.974 0.14 -0.01006   SI 0.00145 -0.982 0.01800 0.971 0.13 -0.01100 -0.974 0.14 -0.01006   NH4 -0.00145 -0.982 0.01800 0.971</td> <td>NG3 0.0000 0.139 -0.00533 -0.938 0.13 -0.00500 0.974 0.14 -0.00742 -0.992   P04 0.00000 0.261 0.00848 0.996 0.13 0.00991 0.996 0.14 0.01590 0.997   SI 0.00000 -0.772 0.09470 0.999 0.13 0.10500 0.9980 0.14 0.00510 0.997   4-JUNE-96 D2 0.00205 0.999 -0.00176 -0.9955 0.15 -0.00359 -0.979 0.17 -0.00348 -0.902   NH4 0.00000 -0.237 0.03700 0.986 0.15 0.03500 0.973 0.17 -0.00348 -0.902   NU3 0.00000 -0.325 -0.00441 -0.995 0.15 -0.00847 -0.993 0.17 -0.00394 0.996   SI 0.00000 -0.083 0.03800 0.991 0.15 0.0100 -0.794 0.14 -0.0100 -0.968   H4 -0.00145 -0.982 0.01800 0.971 0.13 0.00100 -0.974 0.14 <t< td=""></t<></td>	Hd3 0.00000 0.139 -0.00333 -0.758 0.13 -0.00500 0.974 0.14   P04 0.00000 0.261 0.00848 0.996 0.13 0.00991 0.996 0.14   S1 0.00000 -0.772 0.09470 0.999 0.13 0.10500 0.996 0.14   4-JUNE-86 02 0.00205 0.999 -0.00176 -0.995 0.15 -0.00359 -0.998 0.17   NH4 0.00000 -0.239 0.03700 0.986 0.15 0.03500 0.973 0.17   N03 0.00000 -0.325 -0.00541 -0.995 0.15 -0.00847 -0.993 0.17   N03 0.00000 -0.325 -0.00576 0.991 0.15 0.00654 0.982 0.17   SI 0.00000 -0.083 0.03800 0.991 0.15 0.00100 -0.974 0.14   NH4 -0.00145 -0.982 0.01800 0.971 0.13 -0.01100 -0.974 0.14   SI 0.00104 -0.982 0.01800	N03 0.00000 0.137 -0.00333 -0.758 0.13 -0.00500 0.974 0.14 -0.00742   P04 0.00000 0.261 0.00848 0.996 0.13 0.00991 0.976 0.14 0.01590   SI 0.00000 -0.772 0.09470 0.999 0.13 0.10500 0.9780 0.14 0.00310   4-JUNE-86 02 0.00205 0.999 -0.00176 -0.985 0.15 -0.00359 -0.978 0.17 -0.00348   NH4 0.00000 -0.239 0.03700 0.986 0.15 0.03500 0.973 0.17 -0.00348   N03 0.00000 -0.325 -0.00541 -0.995 0.15 -0.00847 -0.993 0.17 -0.00580   P04 0.00000 -0.083 0.03800 0.991 0.15 0.01100 -0.974 0.14 -0.01006   SI 0.00145 -0.982 0.01800 0.971 0.13 -0.01100 -0.974 0.14 -0.01006   NH4 -0.00145 -0.982 0.01800 0.971	NG3 0.0000 0.139 -0.00533 -0.938 0.13 -0.00500 0.974 0.14 -0.00742 -0.992   P04 0.00000 0.261 0.00848 0.996 0.13 0.00991 0.996 0.14 0.01590 0.997   SI 0.00000 -0.772 0.09470 0.999 0.13 0.10500 0.9980 0.14 0.00510 0.997   4-JUNE-96 D2 0.00205 0.999 -0.00176 -0.9955 0.15 -0.00359 -0.979 0.17 -0.00348 -0.902   NH4 0.00000 -0.237 0.03700 0.986 0.15 0.03500 0.973 0.17 -0.00348 -0.902   NU3 0.00000 -0.325 -0.00441 -0.995 0.15 -0.00847 -0.993 0.17 -0.00394 0.996   SI 0.00000 -0.083 0.03800 0.991 0.15 0.0100 -0.794 0.14 -0.0100 -0.968   H4 -0.00145 -0.982 0.01800 0.971 0.13 0.00100 -0.974 0.14 <t< td=""></t<>

LONG-TERM BIOMONITORING PROGRAM: SEDIMENT DXYGEN AND NUTRIENT EXCHANGE(SONE) SUMMARY BONEFLX(Summary of sediment-water exchanges expressed in units of mass/m2/time.

SONE 8

					FLUXES,	MASS/M2/T	INE		
STATION	NATE	C1 114	CORE 3-		CUDE 1	CDDC 2	<b>5005 7</b>	MEAN	LINITS
			n .	пі,п 	LUKE 1	LURE 2	LURE 3	FLUX 	
_ ST.LEO	26-JUNE-84	5 02	-0.994	0.16	-2.80	-2.82	-3.22	-2.95	g 02/ <b>m</b> 2/d
		NH4	0.985	0.15	85.50	113.40	177.60	125.50	ug-at N/#2/h
		NO3	0.957	0.16	19.26	20.92	24.58	21.58	ug-at N/m2/h
		204	0.914	0.16	0.00	0.00	3.44	1.15	ug-at P/m2/h
		SI	0.927	0.16	216.90	420.84	509.76	382.50	ug-at Si/m2/h
BU.VISTA	26-JUNE-96	02	-0.975	0.14	-1.78	-3.07	-2.87	-2.57	a 82/m2/d
		NH4	0.999	0.14	361.20	462.00	415.80	413.00	un-at N/m2/h
		N03	0.989	0.14	57.54	63.67	50.32	57.18	ug at N/m2/h
		P04	0.998	0.14	25.79	43.26	39.40	36 15	ug at N/m2/h
		SI	0.967	0.14	646.80	680.40	621.60	649.60	ug-at Si/m2/h
	05 JUNE 07	00		A 47	<b>.</b>	<b>-</b>			
AUAN 71 .	LUTIONE TO	UZ MUA	-0.991	V.15 A 17	-2.52	-5.16	-2.40	-2.73	g 02/m2/d
		NH4	0.788	U.13	241.80	285.48	201.24	242.84	ug-at N/m2/h
		60% • 0.0	V.77V	V.15 A 47	32.30	28.46	38.68	33.15	ug-at N/m2/h
		PU4	0.92/	0.13	5.84	5.65	2.57	4.02	ug-at P/m2/h
		51	0.978	0.13	/56.60	838.50	749.80	781.30	ug-at Si/m2/h
VIND HILL :	25-JUNE-86	02	-0.978	0.13	- 2.22	-2.43	-1.69	-0.64	a 02/m2/d
		NH4	0.950	0.13	420.00	413,40	249.60	361.00	up-at N/m2/h
		NO3	0.937	0.13	-68.80	41.26	47.19	6,55	uo-at N/m2/h
		P04	0.937	0.13	27.89	18.33	10.14	18.79	uc-at P/m2/h
		SI	0.964	0.13	672.00	351.00	405.60	475.20	ug-at Si/m2/h
RAG PT 2	23-JUNE-86	02	-0.999	0.13	-0.09	-2 13	-0.51	-0 94	a 82/a2/d
		NH4	0.993	0.13	435 44	858 00	795 47	501 71	y uz/#2/u
		NO3	-0.935	0.13	-9 94	-6 45	_0.10	-5 14	ug-at A/az/h
		P04	0.986	0.13	19.77	40 97	27 27	77 75	ug-at N/#2/n
		SI	0.990	0.13	384.54	340.86	503.10	409.50	ug-at Si/m2/h
MN PT 7	T-TINC-OL	07	_0 000	A 14	0.17	0.00	·	4 25	-
	.0 00ML 00	NUA	-V.700	0.14	-2.10	-2.08	-1.36	-1.92	g 02/∎2/d
		807	-0.051	V.14	127.00	128.70	102.48	119.62	ug-at N/m2/h
		004	-0.931	0.14	-48.19	-51.12	-48.89	-49.40	ug-at N/m2/h
		FU4	V.093	V.14	4.60	0.00	2.93	2.51	ug-at P/m2/h
		51	0.99/	0.14	515.84	361.80	324.24	333.96	ug-at Si/m2/h
PT NO PT 2	4-JUNE-86	02	-0.989	0.15	-0.60	-0.89	-0.55	-0.68	q 02/#2/d
		NH4	0.975	0.15	161.29	166.50	159.30	162.36	ug-at N/m2/h
		NO3	-0.035	0.15	3.08	-5.07	0.00	-0.66	ug-at N/m2/h
		P04	0.998	0.15	5.57	3.83	3.29	4.23	ug-at P/m2/h
		SI	0.983	0.15	504.00	440.10	430.20	458.10	ug-at Si/m2/h
R-64 2	4-JUNE-86	02 NU 4	0.846	0.13	-0.47	-0.51	-0.14	-0.37	g 02/m2/d
		1111	A1035	V.13	322.60	<b>J12.4</b> 0	200.30	945.1	ug-at N/m2/h

LONG-TERM BIOMONITORING PROGRAM: SEDIMENT GXYSEN AND NUTRIENT EXCHANGE(SONE) SUMMARY SONEFLX(Summary of sediment-water exchanges expressed in units of mass/m2/time.

		ME	MASS/M2/TI	FLUXES,					
UNI	MEAN					CORE 3-			
	FLUX	CORE 3	CORE 2	CORE 1	нт,н	R	FLUX	DATE 1	STATION
ug-at N/m2.	-47.15	-57.38	-42.00	-41.57	0.13	-0.992	NO3		
ug-at P/m2.	91.14	124.02	83.24	66.14	0.13	0.995	P04		
ug-at Si/m2,	704.28	492.18	882.00	738.66	0.13	0.997	SI		
o 02/m2	-1,16	-1.27	-1.38	-0.82	0.16	-0.902	02	24-JUNE-96	R-78
uo-at N/m2.	338.80	326.40	357.00	333.00	0.16	0.999	NH4		
ug-at N/m2/	-66.59	-55.68	-86.39	-57.69	0.15	-0.987	N03		
ug-at P/m2/	52.12	37.82	66.71	51.84	0.15	0.995	P04		
ug-at Si/m2/	412.60	355.20	540.60	342.00	0.16	0.985	SI		
HG 02/H2/	-1, 94	-1.27	-2.17	-2.39	0.09.	-0.988	02	25-JUNE-86	STIL PD
UG-AT N/M2/	96.38	45.71	90.72	151.71	0.09	0.941	NH4		
UG-AT N/M2/	5.75	8.59	6.47	5.23	0.09	0.792	NC3		
UG-AT P/M2/	5.54	2.45	6.05	8.11	0.09	0.887	P04		
UG-AT Si/M2/	158.97	140,40	63.50	273.00	0.09	0.927	SI		

# Appendix Table 6

LONG-TERM BIOMONITORING PROGRAM: VERTICAL FLUX PROGRAM

VFXPROF (Vertical water column profiles of temp.,salinity,oxygen and particulates)

STATION	DATE	TIME	TOTAL Depth (m)	SAMPLE DEPTH (m)	TEMP (C)	SALINITY (ppt)	DISSDLVED OXYGEN (mg/l)	PC (ug/l)	PN (ug/1)	PP (ug/1)	CHLORO (ug/1)	SESTON (mg/l)
TOM.PT	23-JULY-84	1120	15.8	1	28.3	4.8	7.7	1072	199	27.6	22.9	10.8
					26.2	4.9	8.1		120	27 4	11 0	0 0
				3	23.7	5.4	0.0 1.7	0/4	120	23.7	11.7	0.1
				9	23.3	8.R	3.9	418	73	16.8	4.5	8.3
				11	23.8	9.7	1.2	300	50	16.3	1.5	8.0
				13	22.7	11.5	0.4					
				15	22.5	12.7	0.2	329	54	17.1	2.1	13.1
TON.PT	30-JULY-84	1325	15.3	1	24.4	5.6	7.8			•		
				2				878	166	30.4	22.4	8.8
				3	24.2	5.8	7.2					
				5	24.4	7.7	4.1	498	108	20.4	10.9	6.6
				7	24.2	9.3	1.8					
		•		6				301	50	21.7	2.2	7.3
				9	23.4	12.2	0.2					
				- 11	22.9	14.4	0.2	220	43	9.1	9.1	5.8
				13	22.9	14.4	0.4					
				14				722	117	19.7	5.4	17.6
				15	22.7	14.7	0.3					
TON.PT	07-AUG-B4	1020	16.2	- 1	26.5	5.7	8.9					
				2				1556	277	36.3	24.4	11.4
				3	26.0	6.3	7.8					
				5	25.0	7.7	5.3					
•				6				816	150	31.7	11.2	7.8
				7	24.0	12.5	0.4				•	
				9	23.2	14.6	0.3	358	64	28.1	2.1	9.8
				11	23.0	17.0	0.3	338	59	24.5	2.1	9.3
				13	23.0	17.0	0.3					-
				15	23.0	17.0	0.2	426	72	26.7	2.7	6.5
TOH.PT	14-AU6-84	1007	16.8	1	27.0	7.5	7.8	•	10 ¹ 10 1			
				2				2073	402	60.3	21.3	11.2
				- 3	27.0	7.5	7.4			·		
			. A.	5 -	27.1	1.7	7.2	903	183	31.7	8.6	4.9
				1	23.9	10.0	1.8			-		
				. 8	24.0	17 6		53/	92	51.0	1.0	10.6
				7	24.8	13.5	8.9	170		77 A		
				-11	29.2	14.8	0.5	459	Л	51.0	5.0	1.1
				15	23.0	10.3	V.0	710	20	74 7		11 7
				1.1	23.1		V.0	347	- JU	21.7	2.1	11.5

### LONG-TERM BIOMONITORING PROGRAM: VERTICAL FLUX PROGRAM

VFXPROF (Vertical water column profiles of temp.,salinity,oxygen and particulates)

			TOTAL	SAMPLE			DISSOLVED					
STATION	DATE	TIME	DEPTH (a)	DEPTH	TEMP (C)	SALINITY (pot)	OXYGEN (mg/l)	PC (ua/1)	PN (ug/1)	PP (ug/l)	CHLORO (ug/1)	SESTON (mg/l)
TOM.PT	22-AUS-84	1145	16.9	1	25.0	8.6	7.1					
				2				1284	250	29.6	9.8	15.2
				3	24.5	8.6	5.5	1174	238	30.1	9.1	15.4
				5	24.0	12.5	- 3.9					
				6				317	57	16.3	1.0	17.9
				7	24.0	15.5	0.8				_	
				9	23.0	19.4	0.3	449	68	23.7	1.3	17.2
				11	23.0	19.4	0.3					
				13	23.0	19.4	0.3					
				15	23.0	19.4	0.3	529	80	31.1	1.2	21.1
TOM.PT	30-AU6-84	1010	15.2	0	24.3	12.4	6.8	1287	247	50.2	10.2	17.2
				2	24.3	12.4	6.8					
				4	24.4	12.5	6.3	1002	189	42.3	6.2	17.6
				4	24.2	12.6	5.7					
				8	24.1	12.7	5.8					
				10	24.1	12.7	5.7					
				11				700	128	25.7	4.2	11.2
				12	24.2	13.5	4.5					
				14	23.2	16.5	3.3	711	113	26.8	2.1	10.4
				15	23.2	2 18.4	0.3	565	110	27.6	2.4	16.8
R-78	17-SEPT-84	2030	15.3	1	21.4	11.9	7.9	687	129	24.4	5.5	14.2
	•••			3	21.8	12.1	7.6					
				5	21.8	12.8	6.8					
								572	103	21.7	4.3	12.6
				7	22.2	2 13.2	6.3					
				9	22.4	13.9	5.6				•	
				10				466	84	25.5	2,5	11.8
				11	23.3	2 15.6	2.8		•		2	
				13	23.5	5 16.7	1.2	424	72	17.3	1.1	15.6
				15	23	L 17 5	0.7	1072	165	58.7	3.9	55.2

			TOTAL	SAMPLE			DISSOLVED		•			
STATION	DATE	TIME	DEPTH (m)	DEPTH (m)	TEMP (C)	SALINITY (ppt)	OXYGEN (mg/l)	- PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORD (ug/1)	SESTON (mg/l)
R-78	24-SEPT-84	1300	15.0	1	23.5	11.4	8.6					
				2				1391	241	34.3	19.2	17.0
				3	23.1	11.5	6.9					
				5	22.9	12.1	6.6	1047	186	33.6	12.5	14.4
				7	22.5	12.3	6.7					
				8				1071	181	35.7	11.6	14.0
				9	22.5	12.6	6.6					
				11	22.5	12.6	6.5					
				12				1094	180	36.5	11.2	13.7
				13	22.5	12.8	5.6			,		
		-		15	22.7	13.0	3.2	1302	200	57.7	6.8	31.4

STATION	DATE	TIME	TOTAL DEPTH	SAMPLE	TEMP	SALINITY	DISSOLVED	PC	PN (mg (1))	PP.	CHLORO	SESTON
			(m) 	(m)	(L)	(ppt)	(ag/1)	(ug/1)	(ug/1)	(ug/1/	(ug/1/	(my/1/
R-78	04-0CT-84	1330	15.2	1	19.8	12.1	9.3					
				2				519	92	16.3	4.9	10.8
				3	19.0	11.7	8.3					
				5	18.9	11.6	7.9	329	59	12.8	2.6	8.0
				7	18.7	11.5	7.7					
				. 8				400	67	15.8	2.4	9.6
				9	18.8	11.8	7.5					
				11	18.8	11.9	7.4					
				12				439	73	18.6	2.2	10.8
				13	18.9	12.0	7.1					
				15	19.0	13 4	6.5	856	135	31.3	2.7	21.7
R-78	16-0CT-84	1100	16.4	1	17.7	12.1	8.3	812	172	28.0	9.9	13.0
				3	17.8	13.3	8.2					
				5	17.9	14.1	8.2	587	110	16.8	4.4	5.4
				7	17.9	14.7	7.7					
				9	18.0		7.2	514	80	15.7	3.0	7.4
				11	18.3	16.6	5.6					
•				13	18.5	19.4	4.6	398	70	13.0	1.8	9.0
				15	18.6	18.9	4.2				_	
				16	18.8	18.9	4.0	581	98	27.7	3.6	37.0

STATION	DATE	TIME	TDTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP (C)	SALINITY (ppt)	DISSOLVED DXYGEN (mg/l)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORO (ug/1)	SESTON (mg/1)
R-78	30-NDV-84	1200	17.0	1	11.5	13.2	11.2	667	127	17.5	2.7	5.6
				3	10.8	13.0	11.3					
				5	10.8	13.0	11.3	462	84	17.2	4.1	5.3
				7	10.8	13.1	11.2					
				9 -	10.8	13.2	10.9	373	72	16.4	3.0	5.4
				11	10.9	13.3	10.7					
	•			13	10.9	13.5	10.6	509	90	16.4	2.8	6.6
				15	11.0	13.9	10.3					
				16	. 11.1	14.6	9.8	1013	147	35.8	3.6	21.2
R-78	17-DEC-84	1150	15.9	1	7.8	9.7	11.6	577	101	20.7	5.2	4.2
				3	7.0	12.6	11.0					
				5	7.4	15.0	9.9	345	64	15.2	2.3	4.8
				. 7	7.4	16.7	9.8					
		-		9	7.6	18.3	9.5	347	66	14.5	2.3	4.0
				11	8.0	20.1	9.6	448	67	16.6	2.5	8.0
				13	8.3	20.8	8.4					
				15	8.4	21.0	8.2	1319	183	47.8	3.4	29.8
R-78	19-FEB-85	1156	17.4	1	2.2	10.0	14.4	1226	205	17.7	8.9	7.6
				3	1.2	10.5	14.4					
				5	1.2	11.2	14.2					
				6				1226	192	21.4	8.6	11.4
				7	1.2	12.5	13.8					
				9	1.0	13.0	13.6	1175	202	18.6		7.4
•				11	1.5	14.0	13.4			· · · · · · · · · · · · · · · · · · ·	•	
				12				1344	233	31.1	11.8	11.6
				13	1.0	14.8	12.4				÷	
				15	1.0	15.0	12.2	2652	394	94.0	17.7	43.0
R-78	5-MAR-85	1210	17.0	1	7.1	7.9	13.7	941	152	18.2	7.1	6.2
				. 3	6.3	8.2	13.6					
				5	5.9	8.9	13.6	1380	234	26.2	12.2	9.6
				7	5.4	9.9	13.2			*)		
				9	4.9	11.7	12.6	2105	356	31.2	20.9	9.5
				11	4.9	13.8	11.7					
				13	3.8	14.4	11.5	2806	478	40.5	26.6	18.3
				15	3.7	14.6	11.4					
	·			16	3.6	14.7	11.4	2998	.499	64.0	28.8	30.6

STATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (a)	TEMP (C)	SALINITY (ppt)	DISSOLVED DXYGEN (mg/l)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORD (ug/1)	SESTON (mg/1)
R-78	1-APR-85	1145	16.8	1	10.9	7.0	11.5	1194	190	20.5	7.9	7.6
				2	10.8	7.0	11.5					
				- 5	8.7	8.1	10.7	1649	296	25.9	27.4	10.3
				/	- 8./	10.3	9.5		707			40.7
					8.5	12.4	8./	1821	527	23.8	56.5	.12.7
				11	7.1	13.8	8.0	+007	715	<b>57</b> •	20.2	
				13	1.2		8.4	1883	313	25.4	29.2	19.9
				10	1.2	14.7	8.3	2187	234	21.8	41.0	17.2
R-78	15-APR-85	1325	17.0	1	11.3	7.0	11.5	1594	254	31.2	19.6	8.8
					10.9	8.5	11.4					
				5	10.0	10.5	10.9	1902	306	29.6	21.0	13.0
				7	9.1	14.9	10.7					
				9	8,8	15.8	10.4	2099	361	25.6	45.0	17.0
				11	8.6	16.1	10.2			•		
				13	8.5	17.7	8.4	2568	415	33.6	42.9	22.0
				15	8.4	18.9	5.6					
				17	8.0	19.6	5.2	1700	293	28.1	29.7	18.0
R-78	27-MAY-85	1115	16.5	1	20.6	8.6	7.75	1247	218	19.0	14.3	5.7
				2	19.9	9.3	7.15					
				4	19.5	9.9	6.50					
				6	19.0	10.8	6.15	433	67		3.0	6.0
				8	18.0	12.5	4.24			⊷ دفيرين د	ana ing pinang sa	
				9				460	85	14.3	3.6	5.2
				10	17.0	14.0	2.50					
				12	16.4	14.6	1.68	530	101	13.1	6.2	6.0
				. 14	16.1	14.9	1.51					
				16	16.0	15.1	1.33	500	- 95	15.0	3.5	6.2
R-78	5-JUN-85	1540	15.0	1	21.9	9.8	6.85	1185	210	26.3	15.4	15.0
				2	21.0	10.2	5.65					
				4	19.8	11.8	4.10	668	122	17.3	4.5	10.6
				6	19.0	13.0	2.60					
				. 7	18.5	13.5	1.90	504	91	16.5	2.8	7.0
				8	18.4	13.8	1.75					
	•			10	18.2	14.0	1.60	509	93	15.8	2.9	10.4
				12	18.2	14.2	1.45					
				14	1/.9	15.2	0.75	- 717		25.9	4.7	15.6

3-4 

	•		TOTAL	SAMPLE			DISSOLVED			•		
STATION	DATE	TIME	DEPTH (m)	DEPTH (m)	TEMP (C)	SALINITY (ppt)	OXYGEN (mg/1)	PC - (ug/1)	PN (ug/1)	PP (ug/l)	CHLORO (ug/1)	SESTON (mg/l)
R-78	18-JUN-85	1330	15.5	1	22.9	11.0	8.09	2232	413	37.6	24.9	14.4
				2	22.8	11.0	8.09					
				4	22.5	11.5	6.72					
				6	21.9	11.7	5.69					
				8	21.7	11.9	4.99	1235	227	28.6	13.0	13.4
				10	21.4	13.7	2.55	774	131	15.6	4.0	8.8
				12	20.4	14.8	1.75	793	130	21.7	4.3	9.5
				14	20.3	15.0	1.40	1025	157	23.4	4.5	16.1
R-78	27-JUN-85	1045	16.8	1	22.5	10.8	7.48	1590	318	43.1	18.3	20.6
				2	22.5	10.8	7.42					
				4	22.6	10.9	7.20	1388	279	32.3	16.7	15.2
				5	22.5	11.1	6.52					
				8	22.4	12.5	4.72	1012	223	23.2	10.7	9.6
				10	22.3	14.0	2.38					
				12	21.8	14.5	1.90	B20	163	22.2	4.9	16.8
				14	21.6	14.7	1.58					
				15	21.5		0.92	692	128	27.2	4.0	17.7

CTATION	CTATION	DATE	TTHE	TOTAL	SAMPLE	TENP	SALINITY	DISSOLVED	PC	PN	pp	CHLORO	SESTON
STATION	STHILUN	UHIC	TINC	(#)	(m)	(C)	(ppt)	(mg/l)	(ug/1)	(ug/l)	(ug/1)	(ug/1)	(mg/1)
 R-54	 R-64	23-JULY-84	1600	15.0	1	26.9	8.4	9.7	1829	276	25.2	22:9	13.2
					3	26.1	8.3	8.8					
					4				1124	190	19.8	15.3	11.5
					5	25.0	9.4	8.1					
					7	25.8	8.4	7.8					
					8				582	108	13.8	8.2	6.7
					. 9	25.8	8.5	7.3					
					10				641	118	16.1	7.4	16.0
					11	24.5	9,8	0.9					
					13	24.0	10.8	0.8				_	
					15	23.3	12.6	0.3	286	51	12.8	1.7	10.1
R-64	R-64	30-JULY-84	0900	16.0	1	24.2	7.0	7.8					
					2				1028	205	27.0	20.9	6.9
					3	24.4	7.0	7.8					
					5	24.2	7.0	7.7					
					6				975	202	25.3	19.1	6.1
					7	24.5	7.0	7.6					
					9	24.7	11.7	3.8	514	99	19.8	4.9	6.4
					11	23.9	16.3	0.3					_
					12				262	44	9.4	1.9	5.4
					13	23.9	17.0	0.2					
					15	23.9	18.4	0.2	238	40	7.4	- 2.1	6.0

LONG-TERMLONG-TERM BIOMONITORING PROGRAM: VERTICAL FLUX PROGRAM VFXPROF (VFXPROF (Vertical water column profiles of temp.,salinity,oxygen and particulates)

STATION	DATE	TIME	DEPTH (m)	DEPTH (a)	TEMP (C)	SALINITY (ppt)	OXYGEN (ag/1)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORO (ug/1)	SESTO (mg/1
R-64	07-AUG-B4	1220	16.8	1	26.0	7.0	*	*******				
				- 3	26.0	7.0	8.9	1191	240	29.3	22.0	15
				5	25.5	7.9	7.4					
				6				679	141	23.0	5.7	10
				7	25.0	8.5	3.5					
				9	24.5	12.1	0.7	572	119	24.9	3.8	12
				11	24.0	13.1	0.6					
				12				382	70	14.0	1.6	
				13	23.2	17.3	0.5					
				15	22.5	19.0	0.3	293	54	12.5	3.6	ĺ
				16	22.5	19.1	0.3					
R-64	14-AUG-84	1203	16.8	1	28.0	8.1	7.4					
				2				1214	220	25.0	10.4	
		•		3	27.5	8.0	7.5					
				· 5	27.5	8.3	5.1	1009	201	25.0	7.7	
				7	26.3	9.4	1.9					
				8				464	81	22.9	1.8	
			1 1	9	25.1	12.9	0.5					
				11	23.9	18.0	0.6	268	49	9.8	1.5	
	•			13	23.1	18.5	0.5					
				15	23.0	18.9	0.5	253	45	11.1	0.9	
R-64	22-AUG-84	0900	16.8	1	25.0	9.6	6.6					
				2	· •			1011	217	24.6		
				- 3	25.0	8.6	6.6					
				5	25.0	9.5	4.9					
				6				880	187	24.9	6.3	
				7	25.0	) 13.0	2.5					
				- 9	25.0	15.0	0.2	635	124	24.0	4.4	
				11	24.6	19.2	0.2					
				12				248	45	11.5	0.9	
				- 13	24.0	21.0	0.2	•		*)	an an taon an an taon a Taon an taon an t	
				15	24.0	21.0	0.2	213	50	12.5	1.1	
R-64	30-AUG-84	1325	16.2	0	25.6	12.9	8.3					
				· 1				1503	254	37.5	7.5	
				2	24.8	3 13.0	7.9					
				4.	24.8	3 13.0	7.3			•		
				- 6	24.5	5 13.1	6.6	832	161	25.1	4.7	
				8	24.3	S	6.0			n an an thairte an tha		
				9		1		519	102	20.3	2.0	Ú., 1
				10	24.	1 15.1	3.1		. *	•		
				12	23.7	7 16.4	0.7				. · · · · · · · · · · · · · · · · · · ·	
				13				556	· 103	33.0	1.6	A,
				1,4	23.6	5 17.2	0.4					11 1
				16	23.1	6 18.7	0.3	417	79	25.5	1.3	[

LONG-TERM BIDMONITORING PROGRAM: VERTICAL FLUX PROGRAM

VFXPROF (Vertical water column profiles of temp.,salinity,oxygen and particulates)

STATIO	N DATE	TIME	TOTAL DEPTH	SAMPLE DEPTH	TENP	SALINITY	DISSOLVED OXYGEN	PC	PN	PP	CHLORO	SESTON
			( <b>m</b> )	(m)	(C)	(ppt)	(mg/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(mg/l)
R-64	17-SEPT-84	1830	17.7	i	22.5	14.5	9.9	,				
				2				1922	296	43.7	16.7	42.2
				3	22.7	14.4	9.9					
				5	22.7	14.3	9.6					
				. 7	22.7	14.5	9.2					
				8				1548	267	34.5	13.9	43.4
				9	22.7	14.4	8.8					
				11	22.6	14.4	8.6					
				13	22.5	14.8	7.9	976	157	27.5	9.9	21.2
				15	23.7	17.3	3.7					
				16				454	79	25.2	2.9	18.8
				17	24.1	18.3	1.9	754	120	32.3	3.8	23.8
R-64	24-SEPT-84	0940	17.6	1	22.1	14.1	8.7					
				2				956	167	20.0	6.0	19.3
				2	22.1	14.1	8.8					
				5	22.3	14.3	8.4					
				6				956	1/2	18.4	7.2	17.4
				1	22.2	14.5	- 7.9					~ ~
				9	- 22.3	14.4	1.1	1024	184	22.3	6.8	21.3
•				11	22.3	15.1	6.9					
				13	22.5	15.6	5.2	615	118	23.7	2.9	25.4
				15	23.0	) 17.3	1.9			7.0 -		
				16				705	15/	20.2	2.4	28.4
				17	23.3	) 18.V	0.9				• *	
R-64	04-001-84	1000	19.0	1	18.5	i 12.3	9.1					
				,				615	126	17.2	5.3	14.3
				3	18.5	5 12.5	9.1			••••		
				. 5	18.3	12.6	9.0	495	97	17.4	5.1	14.3
				7	18.3	2 12.6	8.2					
				9	18.5	5 13.0	7.9	344	- 70	12.4	3.3	8.2
				11	18.	L 13.0	7.8	-				
				13	18.	5 13.7	7.6			•		
				15	18.	5 13.9	6.9	411	79	12.1	2.2	16.0
				17	19.0	0 14.1	6.0					
	•			19	19.	6 14.8	5.7	581	96	17.2	2.2	15.2
R-64	16-0CT-84	1540	19.0	1	17.	7 12.8	10.4	1271	212	27.0	6.9	15.3
					17-1	0 17.0 1 15.0	) 7.J ) 0.A		00			2 7 1
				J 7	17	ד נ.ש.ז 7 ונ.ו	0.9	· •//	70	11.0	· · 2.1	, 7 <b>.</b> 1
				0	17 -	u 10+1 Q 1∠ ⊄	; 0.J	F .				
				11	18	0 17 T	( L 0	745		10 4		) 74
				11	18	1 17 5	,	्रम् 	01			· ···
				15	19	3 187	, u.u , 5.4			11 2	) 11	9 ° 7 Å
				17	19	<b>4</b> 194	5 5 1					e (17
				19	19	7 19			101	21 7	5 71	) 281
			· .	11	10.	· 10.1	r 71/	047	141	21.0	<u>د</u> که ا	× _ £0.1

			TOTAL	SAMPLE			DISSOLVED	•		·		
STATION	DATE	TIME	DEPTH	DEPTH	TEMP	SALINITY	OXYGEN	PC .	PN	PP	CHLORO	SESTON
			()	(m)	(C)	(ppt)	(mg/l)	(ug/l)	(ug/1)	(ug/l)	(ug/1)	(mg/l)
R-64	30-NOV-84	1000	18.0	1	11.0	14.5	10.9	395	65	10.6	2.6	5.2
				3	10.9	14.5	10.9					
				5	10.9	14.5	10.9	375	63	10.4	2.1	4.7
				7	10.9	14.5	10.9					
				9	10.9	14.7	10.8	367	63	10.2	2.3	· 9.4
				11	11.0	14.8	10.8					
				13	11.0	14.9	10.7	239	43	8.9	1.5	4.4
				15	11.0	15.0	10.7					
				17	11.2	15.2	10.2	847	122	22.2	2.6	22.7
P-64	17-DEC-84	0920	. 16.5	1	8.1	15.8	12.2	378	70	10.9	3.3	3.2
				3	8.1	17.1	12.2					
				5	8.1	17.4	12.0	378	73	9.5	3.7	2.9
				7	8.2	18.2	11.3					
				9	8.2	18.7	11.2	353	67	10.0	3.5	3.6
				11	8.2	18.9	11.8					
				13	8.4	19.8	10.3	391	76	11.1	3.1	3.8
				15	8.6	20.6	9.6					
				16	9.1	22.1	8.9	417	68	14.5	2.5	7.6

			TOTAL	CANDLE								
STATION	DATE	TIME	DEPTH (m)	DEPTH (#)	TENP (C)	SALINITY (ppt)	0XYGEN (mg/1)	PC (ug/1)	PN (ug/l)	PP (ug/1)	CHLORO (ug/1)	SESTON (mg/1)
R-54	19-FEB-85	0940	18.6	1	1.5	13.5	14.2	1011	167	12.9		6.4
				3	1.2	14.0	14.2					
				4				1002	137	12.1	7.0	5.8
				5	1.2	14.0	14.2					
			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	7.	1.0	14.3	14.1					
				. 9	1.0	15.0	13.5	1380	216	20.2	12.0	11.6
				11	1.0	15.5	13.0					
				12				1444	224	18.5	11.8	10.2
			•	13	1.2	16.0	12.6	1444	224			
				15	1.2	16.0	12.6					
				17	1.5	16.5	12.4	1964	300	30.6	16.4	17.5
R-64	5-MAR-85	0918	18.0	L	6.2	11.7	14.1	707	109	12.2	5.1	5.0
				3	5-8	11.6	14.2					
				5	5.5	11.7	14.2					
				7	5.7	13.2	14.0		•	•		
				9	5.5	13.2	14.0	968	144	11.5	8.1	8.6
				11	4.9	13.9	13.6	1000	153	13.5	9.0	7.2
				13	4.3	14.8	13.2	1585	235	17.4	14.2	14.3
				15	3.2	17.3	11.9					•
	-			17	3.0	17.9	11.6	9203	1176	110.0	36.7	85.8
R-64	1-APR-85	0940	17.7	1	9.1	10.2	13.0	1349	202	22.7	31.3	7.1
				- 3	9.0	10.2	13.0					
				5	8.8	10.1	12.8	1322	218	15.0	34.0	5.6
				7	8.8	10.2	12.8	*		•		
				. 9	. 7.5	12.1	12.1	1299	205	15.0	38.1	10.8
				11	7.5	12.6	10.1	1452	213	17.9	10.0	14.0
				13	7.5	14.0	9.9					
				15	7.5	14.0	9.6	1576	240	18.7	24.6	13.4
R-64	15-APR-85	1015	17.7	1	11.4	13.6	13.2	1622	227	13.3	79.7	13-1
				3	11.1	13.6	13.6					
				- 5	10.9	14.6	13.5	1520	221	14.4	37.4	12.3
				- 7	10.9	14.3	13.3	***V			V617	1714
				9	10.3	14.5	13.2	1387	212	13.3	19.7	11:A
				11	9.1	15.9	10.4		*			****
	•			13	8.9	18.3	8.4	2449	386	22.8	54.8	20.4
				15	8.6	18.5	8.3					••••
		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		17	8.4	18.9	7.9	- 2210	TAA	20.1	- 41 5	16.7

BIOMONITORING; VERTICAL FLUX PROGRAM VFXPROF (Vertical water column profiles of temp.,salinity,oxygen and particulates)

.

STATION	DATE	TINE	TUTAL DEPTH (a)	SAMPLE DEPTH (m)	TEMP (C)	SALINITY (ppt)	DISSOLVED DXYGEN (mg/l)	PC (ug/1)	PN * (ug/1)	PP (ug/1)	CHLORO (ug/1)	SESTON (mg/1)
8-64	30-APR-85	1035	17.7	1	16.7	12.4	11.0	1298	213	17.0	. 13.1	19.0
		-		. 3	16.3	12.6	11.0					
				5	16.1	12.9	10.8					
				. 6				1755	300	20.3	26.9	17.2
				7	15.2	14.1	9.3					
				.9	12.0	20.7	5.9	1984	326	39.0	12.3	
				11	12.2	22.0	6.3					
				12				1033	173	17.3	11.7	24.3
				13	12.4	21.1	6.3					
				15	12.2	21.1	6.3	937	189	17.1	10.5	19.4
				15	12.4	22.2	6.3					
R-64	8-NAY-85	1150	17.5	· · · 1	16.8	11.2	9.1	729	116	11.0	10.3	8.2
		-		2	16.5	i1.2	9.i					
				. 4	16.2	11.2	8.8	852	134	11.9	11.2	7.7
				6	15.4	12.0	7.5					
				B	15.0	12.6	6.5	875	152	14.4	13.9	7.6
				10	14.8	12.7	4.9					
				12	14.4	15.6	3.9	672	144	15.0	8.3	10.0
	•			14	14.0	16.0	3.7					
				16	13.8	16.2	3.7	855	164	20.0	7.8	15.6
R-64	27-MAY-85	0830	17.5	1	19.8	12.4	7.92	917	162	16.1	5.6	7.6
				2	19.8	12.4	7.91					
				. 4	19.2	12.6	7.50					
				6	19.1	12.8	7.35			•		-
				8	18.9	13.1	6.30	451	81	9.8	2.8	2.4
• 1				10	18.5	14.3	5.34					
				. 11				403	74	9.9	1.9	3.9
				12	18.1	15.5	3.99					
				- 14	17.5	16.2	2.27	339	63	11.0	1.7	4.0
				16	17.4	16.8	1.94	400	62	·	2.0	5.4
R-64	5-JUN-85	1745	17.0	1	21.8	12.2		2098	345	34.6	36.5	8.4
				2	21.8	12.2	8.5					
				4	21.5	12.4	7.3	972	163	16.0	12.R	7.1
				6	21.1	13.0	6.8					
				8	20.5	13.0	4.7	627	128	16.2	5.4	5.2
	•			10	19.5	14.8	3.0					
				12	19.5	17.0	2.8	363	58	70.0	3.0	7_1
				14	19.0	17.9	2.4			,		784
										4		

STATION	DATE	TIME	TOTAL DEPTH (m.)	SAMPLE DEPTH (m)	TEMP (C)	SALINITY (ppt)	DISSOLVED DXYGEN (mg/1)	PC (ug/1)	PN (ug/1)	РР (ug/l)	CHLORO (ug/1)	SESTON (mg/1)
R-54	18-JUN-85	1100	17.0	1	23.6	13.2	9.1	1731	316	25.7	14.8	20.6
				2	23.1	13.1	9.1					
				4	22.9	13.5	B.3					
				6	22.8	13.8	8.0					
				9	22.5	14.0	7.2					
				10	22.6	14.2	5.0	980	166	15.4	6.8	6.6
				12	21.6	14.8	3.7	692	139	18.9	3.6	9.7
				14	21.8	15.7	1.9	715	133	11.5	3.3	11.0
				16	20.7	16.1	0.9	606	109	12.5	2.9	10.5
R-64	25-JUN-85	1540	17.5	1	25.7	13.8	9.85	2080	337	30.3	15.8	24.8
				2	24.3	13.0	9.60					
				4	24.0	13.2	8.60					
				6	23.9	13.2	8.35					
				8	23.8	13.2	8.12	1196	257	22.9	9.2	7.7
				10	23.5	13.3	6.50					
				12	22.4	14.0	3.05	751	173	28.7	4.8	15.9
				14	21.7	14.8	1.10	650	138	17.9	3.0	7.7
				16	21.6	15.5	0.55	513	92	20.7	2.0	7.7

## LONG-TERM BIDMONITORING PROGRAM: VERTICAL FLUX PROGRAM (VFX) VFXPRDF (Vertical water column profiles of temperature, salinity, oxygen, and particulates)

			TOTAL	SAMPLE				DISSOLVE	Ð				TOTAL	ACTIVE
STATION	DATE	TIME	DEPTH (#)	DEPTH (m)	TEMP (C)	CONDUCT (umho)	SALINITY (ppt)	OXYGEN (mg/l)	SECCHI (a)	PC (ug/1)	PN (ug/1)	PP (ug/1)	CHLORO (ug/1)	CHLORO SESTON (ug/l) (mg/l)
R-64	 11-JUL-95	1230	17.5	0.5	25.4	228			 1.5	1649	284	24.3	14.2	17.3
				2	25.2	228		7.8		1017	207	2110	1 71 6	
				4	25.1	229		7.4						
				6	24.8	234		6.0		1401	252	22.9	9.7	8.4
				8	24.5	245		4.2						
				10	23.7	258		1.4						
				12	23.6	295		1.4		407	56	6.8	1.4	6.6
				14	23.7	316		2.2		346	52	8.0	1.1	5.5
				16	23.7	323		2.1		478	61	28.4	1.0	7.4
R-64	24-JUL-85	1045	17.5	0.5	27.0	241		8.9	1.6	1912	330	30.0	17.9	14.7
				2	26.9	241		7.9						
			•	4	26.5	242		7.6	I.					
				6	26.4	242				1387	240	26.0	14.1	14.9
				8	25.2	245								
				10	25.5	299				583	108	14.2	3.9	10.3
				12	24.8	323								
				14	24.5	339		÷		435	76	9.9	1.6	9.4
				16	24.2	345				400	57		1.7	11.1
R-64	30-JUL-85	1100	17.0	0.5	26.4	252		8.59	1.2	1593	304	25.8	16.1	9.8
				2	26.1	251		8.50	)					
				4	26.0	251		7.93	5					
•				6	26.0	252		7.61					مر ۱۹۰۹ ا	
				.8	25.9	254		7.25	5	766	163	18.1	10.4	8.3
				10	25.8	268		4.5	3					
				12	25.3	285		5.35	3	434	76	11.7	4.1	7.9
				14	20.0	· 311		81.50	)	412	82	12.9	2.8	8.4
				10	29.3	516		1.30	) •	404				
				17	20.0	9 217		1.2.	5	420	) 86	13.6	2.1	5.6
R-64	5-AU6-85	1015	17.5	i 0.5	25.5	5 244		8.91	1 2.0	) 1758	302	22.6	18.9	11.4
				2	20.4	243		8.50	5					
				4	23.4	244		8.4	נ -	4.4.75				
				0 0	20.0	201		/.0	3	10/8	143	24.2	20.9	8.7
				10 10	23.0	237 117		3.6	1					
				10	23.0	200			5 · 7	1.04			10.0	1.4 .
				14	2013	) 212 ) 710		3.7	/ 0	507	111 1 1 1 1	10.0	10.0	10.3
				14	20.4	. JIV 714		U.7	1	21C	) 111 ) 100	10.1 11.1	3.V	7.8
				10	4J. I	419		V. / :	£ .	215	עטו פ	10.0	3.1	10.4

### LONG-TERN BIOMONITORING PROGRAM: VERTICAL FLUX PROGRAM (VFX) VFXPROF (Vertical water column profiles of temperature, salinity, oxygen, and particulates)

STATION	DATE	TIME	TOTAL Depth (#)	SAMPLE DEPTH (m)	TEMP (C)	CONDUCT (usho)	SALINITY (ppt)	DISSOLVE DXYGEN (mg/1)	D SECCHI (m)	PC (ug/1)	PN (ug/1)	PP (ug/1)	TOTAL CHLORO (ug/1)	ACTIVE CHLORO (ug/1)	SESTON (mg/l)
	13-416-85	1100	17 0	05		250		7 74	1 0	1503	744	20 1			11 3
N <b>Q</b> 4	10 100 00	1144	1/10	2.5	26.8	250		7 71	1.7	1303	297	20.1	19.9		11.3
				4	26.8	251		7.07							
					26.7	253		1.07							
				8	26.5	261		4.87		852	17R	21 5	8.7		12 4
				10	26.2	273		3,60		001	170	21.0	0.7		1447
				12	26.0	336		1.41		419	78	10.5	2.1		8.2
				14	26.0	341		1.47		330	52	8.3	1.9		9.2
				16	26.0	354		1.84		325	54	9.9	1.6		7.3
8-64	20-446-85	1020	16.5	0.5	26.2	253		6.74	1 8	1044	191	21 6	٩ ٨		9.0
				2	26.2	253		6.70	1,0	1044	1/1	21.0	/.0		/./
				4	26.2	254		6.54							
				6	26.1	256		6.01		751	139	16.0	6.6		11 4
				9	26.1	265		5.25		,	107	1010	0.0		1117
				10	26.0	288		2.47		513	116	12.6	2.8		11.7
				12	25.9	335		1.12		417	83	11.2	1.4		8.5
				14	25.7	369		0.86							
				15	25.6	370		0.84		313	47	7.7	1.0		9.2
R-64	17-SEPT-85	1000	17.5	0.5	22.7		15.5	8.72	2.0	1184	245	25.5	15.8	17 6	9.4
				2	22.8		15.4	8.53	210	1115	235	26.6	16.1	17.0	11 1
				4	23.0		16.7	7.92			200	10.0		1012	
				6	23.5		17.6	6.65					-		
				8	23.5		17.4	7.25		589	122	13.2	11.0	11.5	11.2
				10	23.7	i.	18.0	5.71							
				12	23.8		18.1	5.28		549	116	11.8	8.2	7.3	11.4
				14	23.9		18.1	5.08	L						
				16	24.1		18.6	3.94		717	135	16.5	6.8	4.8	19.4
R-64	25-SEPT-85	1700	17.5	0.5	22.9		16.5	7.75	2.2	929	143	14.0	- 11.5	9.8	10.6
				2	22.9		16.5	7.67							
				4	22.9		16.5	7.54		916	186	13.9	12.7	12.5	11.6
				6	22.9		16.5	7.25	i						
				8	22.9		17.0	5.42	!	635	129	12.5	8.6	7.3	9.8
				10	23.0		17.0	6.09	<b>)</b>		- 24				
				12	23.4		19.1	3.95	<b>i</b>	819	127	11.4	4.3	3.3	15.2
				14	23.5		19.7	3.58	1						
				16	23.6		21.0	2.89	)	1258	209	23.3	4.3	2.7	54.8

## LONG-TERM BIOMONITORING PROGRAM: VERTICAL FLUX PROGRAM (VFX) VFXPROF (Vertical water column profiles of temperature, salinity, oxygen, and particulates)

STATION	DATE	TIME	TDTAL Depth (=)	SAMPLE Depth (m)	TEMP (C)	CONDUCT (unho)	SALINITY {ppt}	DISSOLVE DXYGEN (mg/l)	D SECCHI (m)	PC (ug/1)	PN (ug/1)	PP (ug/1)	TOTAL CHLORO (ug/1)	ACTIVE CHLORO (ug/1)	SESTON (mg/l)
R-64	1-0CT-85	1030	17.0	0.5	21.6	*****	16.9	9.05	2.1	1148	241	15.9	14.4	10.4	15.9
				2	21.6		17.0	9.09							
				4	21.5		17.0	9.01		1020	214	13.6	14.8	10.8	11.6
				5	21.6		17.1	8.78							
				8	21.8		1/.1	7.31		594	117	12.3	10.4	7.2	14.8
				10	22.0		18.2	6.54							
				12	22.0		18.4	5.26		671	122	11.9	5.1	5.4	1/.2
				14	22.2		18.7	3.63			004		, <b>-</b>		
				10	<u> </u>		17.0	4.52		1100	224	18.1	5.3	2.7	22.1
R-64	16-0CT-85	730	17.6	0.5	19.7		16.8	9.16	1.3	973	137	11.0	13.6	8.7	9.2
				2	19.8		16.9	9.19							
				4	19.9		16.0	8.97		969	130	10.8	15.0	10.0	7.0
				6	19.8		16.1	7.31							
				8	19.9		18.2	6.49							
				10	20.0		18.6	5.78		409	62	8.7	5.2	2.3	8.8
				12	20.2		19.2	5.06							
	•			14	20.5		19.9	4.13		416	50	9.2	3.5	1.3	9.2
				16	20.9		20.3	3.04		464	71	11.3	3.3	1.8	14.0
R-64	6-JAN-86	1155	17 5	0.5			11 0	14 0		1207	175	17 7			
		1100	1/10	2.3				14.0	2.1	1273	1/3	17.5	ميود المعارين		14.4
				1	ט.ט זז		11.7	14+7 14 L		5110	666	77 1	•		
				+ k	74		17 3	14 0		J110	000	<b>4</b> 4+1			11-6
				R	7.9		12.2 17 A	17+4		1104	151	16 6			11 3
				10	4.1		17.0	1010		1104	1JI 170	10.0			11.3
				12	4.7		14.0	12.7		970	190	1414			10.0
				14	4.3		13.5	12.3							
								1410							
STATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP (C)	CONDUCT (usho)	SALINITY (ppt)	DISSOLVE DXYGEN (mg/l)	D SECCHI (m)	PC (ug/1)	PN (ug/1)	PP (ug/1)	TOTAL CHLORD (ug/1)	ACTIVE CHLORD (ug/1)	SESTON (mg/l)
-----------	-------------	--------	-----------------------	------------------------	-------------------	-------------------	-------------------	------------------------------	--------------------	--------------	--------------	--------------	---------------------------	----------------------------	------------------
R-64	17-JAN-86	1200	18.0	0.5	2.5		13.0	14.64	4.1	1104	101	13.2			7.8
				2	2.9		13.0	15.46							
				4	2.3		13.1	15.61			. – .				
				6 0	2.2		13.3	15.35		1349	171	15.1			10.6
				0 10	2.9		13.5	14.47		1257	107	15.0			10.0
				17	2.3		13.7	14 39		1233	105	13.0			14.0
				14	2.7		14.0	14.20		1426	198	21.8			10.4
				16	3.0		14.6	13.86		1 1 1 1 1	115				•*•
				16.5	3.0		14.6	13.63		1658	227	24.6			23.4
No Chlorc	phyll data:	nethod	is prob	len											
R-44	27-FEB-86	1000	18.0	0.5	2.2	174		14.8	3.9	£80	197	9.4	3.3	2.5	4.6
				2	2.2	175		13.8	ľ	627	101	9.4	3.4	3.0	3.2
				4	2.4	226		13.3				•			
				6	2.5	237		13.3							
				8	2.7	253		13.2		842	126	10.5	6.5	5.6	7.0
				10	2.7	261		13.0	)						
				12	2.9	276		12.6	1						
				14	<u>ئ</u> ، خ م	551		11.3	i .	1134	158	16.9	10.6	8.8	10.4
				10	3.3	220		11.0		1999	210	10.4	11.0	8.8	13.7
R-64	12-MAR-86	1800	17.0	0.5	4.5	239		12.7	,	956	158	12.4	يتو د هدو د		6.0
				2	4.3	239		12.5	5				•		
				- 4	4.3	239		12.5	i	1223	186	13.2			6.8
				6	4.3	241		12.4	F						
				8	4.6	251		12.0	)	1232	169	12.5			6.5
				10	4.6	257		11.9	7						
				12	.4.6	268		11.6	5	1259	213	19.0			9.
				14	4.2	271		11.4	4						
N- 0-1		•		. 16	3.6	5 300		10.1	i	1718	302	29.5			20.
NO UNION	opnyll data	sampli	es lost	: 10 ana	llysis								•	·	
X-04	20-086-02	840	19-0	, 0.5	8.2			12.1	2 1.8	11//	185	15.2	12.0	10.9	· · · ·
				2	8.1	17/		12.	1	1004			15 1		
					0.1 7 0	100 I		12.4	U L	1204	207	10.7	13.8	14.4	1 7.
				0 . D	/.C	) 100 ( )71		11.0	9 7	1117	100	15.4	17 7	11 1	3 111
				. 0 1A	0.0 6 1	5 202 5 750		10	। र	1113	191	1914	1/./	10.1	
				12	A. 1	251		10	2	1770	207	71 0	20 0	19 1	5 19
				14	6.0	) 253		10-1	- 2	1000	, 711	£11]	24.1	10.	. 10:
				16	5.6	3 263		10-1	0						
				17	5.5	3 267		10_1	0	2733	439	46.R	28.1	23.1	2 48.

STATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP (C)	CONDUCT (umho)	SALINITY (ppt)	DISSOLVE OXYGEN (mg/1)	D SECCHI (m)	PC (ug/1)	PN (ug/1)	PP (ug/l)	TOTAL Chloro (ug/1)	ACTIVE CHLORO (ug/1)	SESTON (mg/1)
R-64	14-APR-86	930	17.5	0.5	11.1	155		12.3	2.0	1643	214	10.5	19.6	18.5	8.2
				2	10.5	166		12.1							
				4	10.3	178		11.7		1521	226	12.3	19.8	18.5	11.2
				6	10.1	183		11.0							
				8	9.8	267		8.0		2174	342	19.6	34.3	34.4	14.0
				10	9.9	302		7.2							
				12	9.9	208		7.0		1786	294	15.7	24.2	20.2	15.2
				14	9.8	325		6.6							
				16	9.9	334		6.4		2005	328	21.7	24.8	18.5	27.9
R-64	29-APR-86	935	18.0	0.5	13.5	158		12.3	2.5	1237	166	9.8	11.1	10.5	8.6
				2	13.5	157		12.0							
				4	13.4	130		11.5		1156	160	10.4	11.3		8.1
				6	11.9	210		10.2							
				8	11.5	222		9.4		1173	174	11.0	17.1	19.3	9.3
				10	11.4	264		6.7							
				12	11.4	265		5.5		1438	218	14.1	18.2	16.0	15.7
				14	11.2	281		4.8							
	•			16	11.2	295		3.9							
				17	11.2	301		3.4		1619	240	17.3	17.2	18.1	18.4
R-64	5-MAY-86	950	16.5	0.5	13.8		10.4	10.2	2.7	5347	697	9.2	7.1	7.1	8.2
				2	13.6		10.4	10.2					·		
				- 4	13.4		10.5	10.1				10.4	8.3	8.4	4.2
				5	12.8		12.5	8.8							
				8	12.7		13.4	8.3		1024	135	10.8	10.5	10.3	5.4
				10	12.4		14.6	7.5							
				12	12.4		14.6	7.3		1206	174	11.6	15.0	14.7	5.8
				14	11.9		16.5	5.7							
				16	11.8		17.7	5.2		2539	335	16.9	25.8	24.4	10.0
R-54	14-MAY-86	1545	18.0	0.5	16.9	196		9.4	3.5	879	103	6.4	5.5	5.6	1.2
				2	16.8	195		9.7			•		2 1		· •••
				4	16.8	197		.9.5	•						
				6	16.6	200		9.1		561	76	5.0	4.0	3.8	0.7
				8	15.9	213		8.7							
				10	15.3	226		7.6		578	80	5.3	3.4	3.2	0.6
				12	14.6	241		6.7	r						
				-14	14.0	259		5.5		2615	310	20.3	30.0	30.2	5.9
				16	13.4	278		. 4.0	1	1405	180	14.4	16.3	15.6	3.6

STATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP (C)	CONDUCT (umho)	SALINITY (ppt)	DISSOLVE OXYGEN (mg/l)	D SECCHI (g)	PC (ug/1)	PN (ug/1)	PP (ug/l)	TOTAL CHLORO (ug/1)	ACTIVE CHLDRD (ug/1)	SESTON (mg/l)
R-64	19-MAY-B6	0925	17.5	0.5	19.5		10.2	11.6	2.6	1755	205	10.0	10.1	10.3	8.8
				2	18.8		10.2	11.8							
				. 4.	18.8		10.3	11.8							
				6	18.5		10.5	11.7		844	118	6.4	8.0	8.0	1.6
				8	19.8		10.5	11.5							
				10	16.2		11.5	8.9		759	104	6.5	7.5	7.2	4.6
				12	15.8		12.3	6.8	l						
				14	14.2		14.5	5.0	ł	1520	188	11.2	15.9	15.0	9.3
				16	13.9		15.2	4.1		2080	221	11.3	19.6	18.5	4.2
R-64	3-JUNE-86	758	17.0	0.5	20.2	205		6.1	2.0	B50	175	12.3	5.0	4.0	3.7
				2	20.3	210		6.1							
				4	27.4	212		6.1		793	151	12.3	5.0	4.2	2.5
				6	20.4	211		6.1	•						
				8	20.5	213		6.0	E.,						
				10	19.6	237		4.8	1	684	137	12.3	4.3	3.B	2.3
				12	16.6	336		2.5	i						
				14	16.4	339		2.3	5	987	141	16.B	3.5	2.3	25.0
				16	16.2	340		2.2	2	1273	205	26.2	4.8	2.7	22.6
R-64	12-JUNE-86	825	18.5	0.5	23.6	209		7.6	5 1.5	5 1136	215	13.9	10.3	8.2	0.8
				2	23.6	207		7.7	7						
				4	23.4	210		7.5	5	1002	194	11.1	12.0	10.3	0.6
				6	23.0	213		7.1	l						
				8	22.1	232		5.2	2				·		
				10	19.8	272		2.4	<b>\$</b> .	1063	193	10.8	4.4	3.3	0.2
				12	18.5	288		1.7	7						
				14	18.3	5 306		1.4	4 ·	531	. 86	5 7.1	2.5	1.9	0.5
				10	18.1	514		1.4	f -						
				17•2	18.1	514		1	3	445	ני אין	5.8	1.8	1.4	1.1
R-64	16-JUNE-86	805	17.0	0.5	24.4	209		7.	3 2.3	7 1086	218	15.0	8.4	6.7	5.4
,				2	24.4	210		7.	4				•		
				4	24.4	209		7.	4	1023	5 208	3 13.1	8.7	7.1	1 - 1.1
				6	24.4	210		7.	ά.						
				8	23.	233		5.	6				_		
		•		9	21.	255		3.	4	899	181	- 13.1	9.2	7.0	5 1.6
				10	21.	5 259		2.	5	_				_	
				12	20.	o 283		1.	4	644	120	) 10.5	3.2	2.4	4 0.9
				14	20.	s 287		1.	3	<b></b>					
				16	19.	6 314		0.	6	35	0 54	7 5.9	1.5	i 0.'	9 1.0

STATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH	TEMP	CONDUCT	SALINITY	DISSOLVE	D SECCHI	PC (va/1)	PN (40/2)	PP	TOTAL Chloro	ACTIVE CHLORO	SESTON
								· #y/ #/	\m/ 	·ug/1/	·uy/1/	·uy/1/	(uy/1/	_ (uy/1/	
R-64	24-JUNE-86	1110	17.0	0.5	24.3	220		9.7	1.9	1365	293	25.1	12.3	10.9	4.8
				2	24.3	220		9.3							
				4	24.2	222		9.0		1231	261	20.4	9.9	9.2	6.0
				5	24.0	229		8.1							
				8	23.3	244		6.1		631	144	15.8	3.5	2.5	5.9
				10	22.0	274		1.8		619	122	14.4	2.4	1.5	
				12	21.2	288		0.6							
÷.,				14	20.5	302		0.1							
				15.5	20.4	303		0.0		552	111	13.8	1.9	0.7	9.9

STATION	DATE	TINE	TOTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP (C)	CONDUCT (umho)	SALINITY (ppt)	DISSOLVED OXYGEN (mg/l)	SECCHI DISC (m)	PC (ug/1)	PN (ug/1)	PP (ug/1)	TOTAL CHLORO (ug/1)	ACTIVE CHLORD (ug/1)	SESTON (ag/1)
DARESBCH	11-Jul-85	1400	9.8	0.5	25.9	227		 8.4	1.6	1771	263	24.3	13.2	يوه هار بوه ها خو بوه هو	 8.4
				2	25.5	227		B.4							
				4	25.1	227		7.7		1837	284	23.6	15.4		10.3
		•		6	24.9	229		6.9		1661	274	32.4	14.9		12.0
				8	24.9	230		6.3		1380	239	26.4	12.3		11.0
				9	24.7	232		5.3		1291	202	27.6	9.5		12.4
DARESBCH	24-Jul-85	850	10.0	0.5	26.1	239		6.6	1.9	1172	218	29.6	10.7		26.6
				2	26.1	238		5.4		1259	244	30.0	11.8		25.4
				4	26.1	238		6.3		1249	241	27.0	11.6		23.8
				6	26.2	238		6.3		1025	195	33.0	11.1		
				8	25.2	238		6.4		1150	210	51.0	10.5		
DARESBCH	30-Jul-85	1000	9.5	0.5	26,2	251		7.69	1.3	1390	267	27.4	14.4		14.4
				2	26.1	250		7.66		1334	285	30.3	13.8		13.3
				4	26.0	250		7.47		1145	234	29.7	12.5		10.8
				6	26.0	250		7.36		1131	238	30.9	11.7		14.4
				8	25.0	250		7.30		1404	249	30.3	11.9		16.6
DARESBCH	05-Aug-85	830	10.0	0.5	25.6	238		7.42	1.4	1889	360	30.5	i 23.7		11.5
				2	25.7	238		7.57		1614	323	32.0	) 25.3		23.8
				4	25.7	238		7.57					· · ·		
				6	25.7	238		7.48		1489	317	40.0	21.1		
				8	25.6	241		6.54		1013	227	27.9	11.5		13.8
				9	25.8	5 250		6.21		1090	228	30.3	5 14.6		18.9
DARESØCH	13-Aug-85	845	10.0	0.5	27.1	246		7.19	1.4	2342	421	40.4	27.5	i	15.3
				2	27.0	) 246		6.94		1682	299	27.2	2 16.7	,	11.9
				4	26.9	246		6.71		1224	235	25.3	3 10.6	i	12.6
				6	26.9	7 246		6.43		1017	193	24.0	) 8.8		11.5
				8	26.8	3 247		6.31							
				9	26.7	7 249		6.06		752	135	19.4	6.9		10.5
DARESBCH	21-Aug-85	1453	10.0	0.5	25.8	3 244		7.20	1.2	3720	782	58.4	\$ 50.3	5	23.7
				2	25.9	7 244		7.20							
	•			4	26.0	) 244		7.24		3275	668	57.0	0 60.8	1	25.0
				6	26.0	) 244		7.21		3043	611	. 49.(	0 53.8	)	28.2
				8	26.3	1 244		7.20		2950	618	45.0	0 46.2	2	26.6
				9	26.0	0 244		7.20		2811	542	2 55.0	0 48.4	ł	27.8
DARESBCH	17-Sep-85	850	9.5	5 <b>0.</b> 5	22.4	4	15.0	) 7.55	1.6	5 1028	167	27.	1 13.9	14.3	7 13.1
				2	22.4	4	15.(	7.52		·					
				4	22.4	4	15.0	) 7.51		973	5 178	25.5	5 12.9	11.0	) 12.3
				9	22.4	4	15.0	7.44		894	167	22.3	2 12.0	5 10.3	3 12.5
				8	23.0	0	16.2	2 4.53		1167	/ 181	29.0	6 12.0	5 9.1	7 17.4
				8.5	23.3	2	16.	3 4.26		1417	220	31.	7 13.9	7 10.	3 17.0

STATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (m)	TEMP (C)	CONDUCT (umho)	SALINITY (ppt)	DISSOLVED OXYGEN (mg/1)	SECCHI DISC (m)	PC (ug/1)	PN (ug/1)	PP (ug/1)	TOTAL Chloro (ug/1)	ACTIVE CHLORO (ug/1)	SESTON (mg/l)
DARESBCH	25-Seo-85	1820	10.2	0.5	22.4		16.0	6.58	1.7	948	202	19.1	9.3	6.4	
				2	22.6		16.0	6.54							
				4	22.6		16.0	6.67		847	132	14.0	7.1	5.3	9.3
				6	22.6		15.0	6.61		657	118	19.5	8.3	5.9	16.6
				8	22.6		16.0	6.78		888	172	29.2	13.6	9.1	20.2
				9	22.4		16.0	6.72		2285	442	34.3	15.6	14.7	23.6
DARESBCH	01-0ct-85	1145	9.5	0.5	21.8		16.9	7.36	1.7	1119	171	18.2	12.8	8.7	17.9
				2	21.7		16.9	7.37		1134	190	16.7	12.8	7.8	24.7
				4	21.8		17.6	7.33		623	88	11.3	6.3	3.9	19.0
				6	22.0		18.2	6.65		319	54	6.8	2.9	1.3	11.2
			•	5	22.2		18.3	5.72		972	96	15.8	4.6	1.2	21.6
DARESBCH	16-Oct-85	1115	10.4	0.5	19.5		16.8	8.55	2.7	864	129	11.1	8.2	6.1	8.4
				2	19.5		16.8	8.58							
				4	19.6		16.8	8.41		674	115	10.8	7.7	5.1	6.0
				6	19.7		17.2	7.34		559	85	10.0	4.5	1.6	7.4
	•			8	19.7		17.6	6.43		809	128	16.4	6.3	1.9	17.6
				9	19.7		17.8	6.03		1959	175	26.7	12.3	4.3	27.9
DARESBCH	06-Jan-86	1320	10.0	0.5	3.4		11.6	14.4	2.5	1418	183	19.9	ļ		17.3
				2	3.4		11.8	14.4		1341	182	17.9			9.9
				4	3.4		11.8	14.4		975	135	19.5			10.0
				6	J.4		12.0	14.1		1159	170	20.0	)		8.8
No Chlor				8 51	ა.ხ		12.5	13.5		1152	1/0	19.5	ŧ.		15.5
NO LATOP	000011 0414 17-101	1745 (1987)	oas proi	DICA		,		45 7	~ •	1004	151				
VMREDDGA	1/-Vdii-00	1343	10.0	v.J n	2.7	,	12.4	13.3	2.4	1204	106	12.1			7.6
				2	2.0	) )	12.0	15.1		1404	103	14 1			10.0
				4 L	2.4	)	12.7	13.4		1970	172	16.1			10.0
				0 0	2.1		12.7	1.J t A	•	1340	170	10.1			12.0
				9	2.5	, 1	13.0	14.0		1479	205	15.4			10.0
No Chlor	oohvll data	:meth	ods pro	, blea	211	,	1910	1410		14/0	203	1.0.7			10.1
DARESBCH	27-Feb-86	1200	11.0	0.5	1.9	)	9.4	13.8		714	113	9.4	4.1	3.5	3.20
				2	1.9	<b>,</b>	9.5	13.8		707	107	10.1	4.3	4.0	4.4
				4	1.9	,	9.5	13.7		723	101	10.0	) 4,9	1	4.9
				6	2.1		10.7	13.7		879	240	11.3	2 7.3	6.3	4.6
				8	2.4	ļ	14.0	12.4		474					
				9	2.0	5	15.4	11.6		2403	312	2 <b>28.</b> 3	5 20.0	) 15.5	i 18.8
DARESOCH	12-Mar-86	1900	10.0	0.5	4.5	5 237		13.0		937	131	11.5	5		8.2
				2	4.	236		12.5		832	131	11.1	5	N.	5.4
				4	4.	3 236		12.5		838	136	12.	7 5.9	5.3	5 7.0
				6	4.	3 236		12.4		887	133	11.	5 6.2	2 5.4	5 5.4
				8	4.	5 240		12.0							
				9	4.9	7 245		11.8		1307	194	15	1 10 3	7 g.	77

STATION	DATE	TIME	TOTAL DEPTH (m)	SAMPLE DEPTH (#)	TEMP (C)	CONDUCT (usho)	SALINITY (ppt)	DISSOLVED Oxygen (ag/1)	SECCHI DISC (m)	PC (ug/1)	PN (ug/1)	PP (úg/l)	TOTAL Chloro (ug/1)	ACTIVE CHLORO (ug/1)	SESTON (@g/l)
DARESBCH	28-MAR-95	1015	10.5	0.5	8.4	175		12.2	2.0	1136	177	13.9	13.7	12.6	6.7
				2	8.2	175		12.1		1168	178	15.0	14.5	15.1	8.2
		•		4	9.1	178		11.9		1367	218	16.0	15.5	15.1	9.0
				6	8.1	185		11.8		1251	196	18.2	18.0	23.5	11.3
				8	8.0	188		11.6							
				9.5	/.5	201		10.9		1459	250	24.4	21.2	11.4	13.3
DARESBCH	14-APR-86	1130	9.8	0.5	11.2	153		12.4	1.9	1583	217	11.1	18.2	16.9	12.3
				2	10.9	154		12.4		1582	203	12.0	17.8	16.8	10.4
				4	10.4	154		12.5							
				5	10.4	153		12.1		1601	223	11.1	21.3	19.3	13.2
				9	8.5	240		6.3		1840	284	19.0	32.0	29.4	25.2
				9	8.4	245		6.1		2822	471	20.5	36.3	32.8	20.8
DARESBCH	29-APR-85	1030	10.0	0.5	14.2	151		12.7	1.8	1431	182	9.2	12.4	11.8	10.0
				2	13.7	154		12.7							
				4	13.1	169		11.6		1357	196	10.6	14.5	13.9	10.0
				5	12.0	197		9.1		1616	236	15.0	) 24.4	22.7	12.8
•				8	11.2	254		5.3		2937	333	23.2	34.1	31.9	29.4
				9	11.2	239		3.3		2044	265	15.4	26.9	23.5	26.6
DARESBCH	5-MAY-86	1230	10.4	0.5	13.9	7	10.1	10.7	1.9	1704	205	13.6	5 14.7	14.7	9.4
				2.0	14.0	)	10.1	10.7					·		
				4.3	13.4		10.1	10.8		2202	254	-17.8	3 24.0	25.2	8.6
				5.0	12.5	1	11.5	9.1		1477		12.9	7 17.0	16.4	6.6
				1.6	12.3	)	13.5	/ 6.7		21/5	2/6	1/.1	3 30.6		12.8
				10.0	12.1		12.4	2.4		2495	5 4/1	21.4	47.2	48./	12.4
DARESBCH	14-MAY-86	1345	10.7	0.5	16.8	197		9.6	3.1	1246	136	8.6	5 8.3	8.5	5 2.4
				2	16.8	193		9.7		1199	130	9.3	3 9.0	8.4	2.2
				4	16.8	3 197		9.6		1225	5 133	8.7	7 8.8	9.2	2 3.0
				6	16.3	5 206		8.6		1225	i 137	9.1	6 11.4	11.4	2.4
				8	15.	3 217		8.5							
				9.5	15.0	) 228		6.9		5368	3 469	29.5	5 52.3	56.5	5 12.4
DARESBCH	1 19-MAY-86	1020	10.0	0.5	19.0	)	10.	1 11.1	3.1	100	5 119	5.3	3 7.6	) 7.	1 1.0
				2	19.0	3	10.2	2 11.2		1031	L 119	7 5.	6 7.4	4 7.0	5 1.4
				4	19.1	B	10.0	0 11.6							
				6	16.	5	10.1	7 9.2		175	9 213	5 9.1	3 19.	4 19.3	3 4.0
				9	15.	9	10.	9 8.4		165	3 18	3 10.	0 16.	9 16.	8 3.5
				9	15.1	9	10.1	B 7.9		332	5 323	5 17.	9 34.	5	9.0

DARESBCH 28-MAY-86 DATA NOT YET AVAILABLE

STATION	DATE	TIME	TOTAL DEPTH (a)	SAMPLE DEPTH (a)	TEMP (C)	CONDUCT (umho)	SALINITY (ppt)	DISSOLVED OXYGEN (mg/1)	SECCHI DISC (m)	PC (ug/1)	PN {ug/1}	PP (ug/1)	TOTAL Chloro (ug/1)	ACTIVE CHLORO (ug/1)	SESTON (mg/l)
DARESBCH	3-JUNE-86	930	10.0	0.5	20.80	193	******	7.0	1.5	1196	234	20.7	8.2	7.1	5.6
				2	21.00	192		6.7		1242	236	18.7			4.7
				. 4	21.00	192		6.7		1262	246	18.6	8.1	6.5	4.8
				6	21.00	192		6.8							
				8	21.00	192		6.7		1159	217	20.9	7.9	6.9	5.3
				9	21.00	192		6.5		1192	216	21.6	8.0	6.1	7.1
DARESBCH	12-JUNE-86	1055	9.0	0.5	24.2	212		8.4	2.0	1173	205	11.6	9.8	7.9	0.7
				2	23.7	209		7.8		1302	235	12.6	11.4	9.2	1.2
				4	23.2	217		7.1		1064	206	13.4	11.0	7.9	0.7
				6	22.8	220		5.8		893	179	11.6	8.5	6.4	1.2
				8	21.4	245		3.3		648	116	11.7	4.3	2.6	2.3
DARESBCH	16-JUNE-86	1015	10.0	1	24 5	214			1 0	1470	797	15 7	17 7	10 5	1 0
				2	24.4	213		۰., ۲۵	1.7	14/4	101	1014	10,4	10.5	1.0
				4	74.4	214		6.7		1751	270	15 7	17 0	10 5	2 0
	•				23.5	230		4.4		1144	270	10.0	75	10.0	1 5
				8	21.6	260		1 4		1195	234	17 1	, 1.J 2.7	0.0 7 0	1.5
				9	20.9	266		0.B		1021	192	11.9	4.3	3.0	2.9
DARESPCH	24-JUNE-86	1414	10.4	0.5	24.4	217		8.5	1.4	2316	456	36.9	22.1	20.2	9.00
				2	24.2	217		8.3							
				. 4	24.2	215		7.8		1263	261	21.9	11.1	9.7	8.00
				6	23.7	230		5.3		969	203	19.1	6.8	5.0	10.90
				8	23.1	243		3.1		980	194	21.9	5.7	4.1	11.50
				8.5	23.0	244		3.0		1053	192	22.6	5.5	4.0	11.10
DARESBHC	1-JULY-86	900	10.8	0.5	24.1	204		8.5	1.2				B.5	4.7	
				2	24.2	203		8.0				<b>*</b> }	11.4	9.6	
				4	24.3	203		7.9				م میریند	11.6	9.6	
				- 6	24.3	203		7.9							
				8	24.3	203		7.7					11.5	10.8	
				9.5	24.1	211		4.7					7.5	4.7	

LONG-TERM BIOMONITORING PROGRAM: VERTICAL FLUX VFXSEDS (description of particles in the surface 1 cm of the sediment column)

STATION	DATE	PC (%)	PN (2)	PP (2)	TOTAL Chlord (#g/#2)
TON PT	23-JULY-84	3.39	0.43	0.090	78.4
	30-JULY-84	3.67	0.47	0.083	67.8
	07-AUG-B4	3.53	0.44	0.078	76.8
	14-AUG-84	3.43	0.40	0.073	70.8
	22-AU6-B4	3.83	0.49	0.089	73.8
	30-AUG-84	3.28	0.41	0.077	52.7
K-78	1/-SEP1-84	7 45		A 407	
	24-5EP1-84	5.00	0.32	0.08/	22.6
	04-061-84	5.35	0.37	0.0/8	24.2
	16-001-84	4 87			D4 E
	30-NUV-84	1.83	0.14	0.055	21.3
	1/-DEC-84	5.49	0.39	0.122	54.5
	17-168-83	3.60	0.38	0.085	48.0
	3-MAK-83	5.28	0.43	0.101	4/./
	1-APK-85	5.65	0.42	0.101	228.4
	13-APK-85 7-MAY-85	2.75	0.25	0.061	84.0
	27-MAY-85	5.65	0.32	0.061	44.9
	5-JUNE-85	4.12	0.47	0.136	153.0
	18-JUNE-85	4.11	0.42	0.100	164.0
	27-JUNE-85	3.83	0.48	0.0B7	104.0
D_ 14	27-110 V.DA	7 44	0 47	0.050	70 4
N-04	23-JUL1-64	3.11	V.40 0.74	0.037	10.4
	7 AUC 04	2.79	0.34	0.048	+1./
	/-HUD+04	3.00	0.50	0.004	/0.0
	14-HU0-04 22-AUC-04	3.02	0.00	0.000	33.D (4 A
	22-HU0-04	3.78	0.01	0.004	51.0
	30-NUB-84 17-CEDT-04	2.71	0.40	0,000	. JI.Z
	1/-3EF1-04	7 00	A 70	A A/3	22.4
	24-3EF1-04	5.07	0.37	0.002	22.4
	4-001-04 30_NDU_04	2.90	0.30	0.055	20.0
	17_REF_04	7 00	0,31	0.000	2012
	19-550-95	3.07 7 00	0.37	0.037	27.0 A1 D
	17-165-65 5-800-05	2.00 7.40	0.97 0. AD	0.000	ם.ודי ל מג
	1_000_05	3174 7 70	0.47 A 70	0.0/5	47.J 17.10
	15-000-05	J. 27 7 22	0.37	120.0	107.0
	10-00100	2.00	0.J4 A 74	0.VJ0 0.057	210.0
	S-MAV-DS	2.00 7 11	0.JT A 10	0 0D1	100 0
	0-11H1-0J 27_WAV_05	3.04 7 7A	0 74 0 74	V.VOI 0 055	170.V 170.V
	27-001-0J. 5-100-05	4./٩ סמי	0.JD 0.JD	0.010 0.010	130.3
	J-VUN-0J 10_104_05	2,00	0.30	0.047	100.4
	10-404-07	2.72	0.37	0.003	1/1+3

1

STATION	DATE	PC (X)	PN (2)	PP (Z)	TOTAL CHLDRD (mg/m2)	ACTIVE CHLORO (ag/a2)
R-64	11-JULY-B5	2.90	0.39	0.047	159	
R-64	24-JULY-85	2.52	0.36	0.042	115	
R-64	30-JULY-85	2.52	0.32	0.043	159	
R-64	5-AUG-85	3.12	0.33	0.045	131	
R-64	13-AUG-85	2.43	0.31	0.042	. 114	
R-64	20-AUG-85	2.98	0.34	0.060	143	
R-64	17-SEPT-85	2.73	0.36	0.048	129	58.2
R-64	25-SEPT-85	2.55	0.33	0.046	115	47.8
R-64	1-0CT-85	2.20	0.29	0.042	115	47.8
R-64	16-0CT-85	2.72	0.35	0.062	116	15.8
R-64	6-JAN-86	2.78	0.34	0.061		
R-64	17-JAN-86	2.71	0.33	0.052		
R-64	27-FEB-86	2.56	0.26	0.046	244	187
R-64	12-MAR-86	2.58	0.32	0.049	210	87.2
R-64	28-MAR-86	2.69	0.35	0.058	224	-112
R-64	14-APR-86	3.05	0.41	0.071		
R-64	29-APR-86	2.60	0.33	0.049	153	62.8
R-64	14-MAY-86	2.71	0.31	0.051	158	67.3
R-64	19-MAY-86	3.64	0.42	0.068	309	128
R-64	28-NAY-84	2.51	0.32	0.055	224	102
R-64	3-JUNE-86	3.21	0.41	0.069	233	108
R-64	12-JUNE-86	3.25	0.38	0.061	139	65.B
R-64	16-JUNE-86	2.82	0.34	0.056	218	89.7
R-64	24-JUNE-86	3.33	0.44		244	B3.7

# LONG-TERM BIOMONITORING PROGRAM: VERTICAL FLUX VFXSEDS (Description of particles in the surface 1 cm of the sediment column)

2

STATION	DATE	PC (2)	PN (7.)	PP (%)	TOTAL CHLORO (mg/m2)	ACTIVE CHLORO (mg/m2)
DARESBCH	11-JUL-85	3.52	0.43	0.054	119	
DARESBCH	23-JUL-85	3.65	0.46	0.062	104	
DARESBCH	30-JUL-85	3.26	0.38	0.056	130	
DARESBCH	05-AUG-85	4.01	0.53	0.070	121	
DARESBCH	13-aug-85	3.78	0.45	0.059	130	
DARESBCH	21-AUG-85	3,79	0.57	0.060	110	
DARESBCH	17- <del>SEP-8</del> 5	3.63	0.48	0.068	118	42.5
DARESBCH	25-SEP-85	3.27	0.28	0.064	131	42.3
DARESBCH	01-OCT-85	3.72	0.54	0.063	131	37.1
DARESBCH	16-OCT-85	4.02	0.50	0.071	125	5.4
DARESBCH	06-JAN-86	3.50	0.44	0.085		
DARESBCH	17-JAN-86	3.69	0.45	0.071		
DARESBCH	27-FEB-86	3.83	0.47	0.072	193	87.2
DARESBCH	12-MAR-B6	3.18	0.40	0.075	259	112
DARESBCH	28-MAR-86	3.59	0.44	0.074	236	100
DARESBCH	14-APR-86	3.68	0.46	0.070		
DARESBCH	29-APR-86	3.50	0.45	0.063	189	71.8
DARESBCH	14-MAY-86	3.77	0.46	0.086		
DARESBCH	19-MAY-86	3.80	0.46	0.066	256	114
DARESBCH	28-MAY-B6	3.B3	0.47	0.077	233	89.7
DARESBCH	3-JUNE-86	3.67	0.44	0.077	222	138
DARESBCH	12-JUNE-86	3.20	0.39	0.066	206	102
DARESBCH	16-JUNE-86	3.85	0.48	0.086	233	114
DARESBCH	24-JUNE-86	3.48	0.41		174	59.8
				-		

LONG-TERM BIOMONITORING PROGRAM: VERTICAL FLUX VFXSEDS (description of particles in the surface 1 cm of the sediment column)

# Appendix Table 8

LONG-TERM BIOMONITORING PROGRAM; VERLONG-TERM BIOMONITORING PROGRAM; VERTICAL FLUX PROGRAM — VFXDEPD (deposition rate of particuVFXDEPD (deposition rate of particulate to the top of the sediment trap cup at deployment depth)

- S1	TATION	DATE Deploy	TIME	DATE Retrve	TIME RETRVESTATI	DATE	TIME	DATE ' RETRVE	TIME Retrve	TDTAL E TIME (days)	TDTAL DEPTH (m)	CUP Depth (m)	-SESTON (g/m2/d)	PC (mg/m2/d) (	PN (mg/m2/d) (	PP mg/m2/d)	CHLDRD (mg/m2/d)
 Ti	DM.PT	23-JULY	- 1315	30JULY-1	B 1455 TOM.P	 T 23-JULY	- 1315	30JULY-	8 1455	7.1	15.5	4.2	16.4	836	· 125	29	6.9
										7.1	15.5	4.2	18.5	941	130	28	7.7
										7.1	15.5	4.2	11.0	469	68	16	3.3
										7.1	15.5	4.2	12.5	655	94	17	5.2
										7.1	15.5	4.2	23.1	1064	147	39	10.4
										7.1	15.5	4.2	26.4	1185	158	40	11.1
-	1			•						7.1	15.5	4.2	25.1	1164	158	39	9.5
										7.1	15.5	4.2	28.3	1145	143	40	8.4
										7.1	15.5	4.2	352.0	17668	2366	368	82.6
	nin st V									7.1	15.5	4.2	427.0	20802	2792	461	9B.5
	-									7.1	15.5	4.2	376.9	18673	2556	412	95.2
T	OM.PT	30-JULY	- 1510	7-AUG-8	4 1100 TOM.	PT 30-JUL	Y- 1510	7-AUG-8	84 1100	7.9	16.0	4.7	8.4	865	82	13	2.7
										7.9	16.0	4.7	8.7	494	71	16	3.3
										7.9	16.0	9.7	17.9	988	140	30	3.1
										7.9	16.0	9.7	21.0	903	121	31	8.7
		*		•						7.9	16.0	14.8	312.9	14210	1899	326	58.1
										7.9	16.0	14.8	285.6	14150	1895	321	61.8
- 1	ION.PT	7-AUG-8	84 1100	14-AUG-	-B 1030 TDM.	PT 7-AUG-	84 1100	14-AU6	-8 1030	7.0	16.2	4.9	8.7	689	106	19	2.2
										7.0	16.2	4.9	10.5	714	104	21	2.6
										7.0	16.2	9.9	13.9	756	107	21	3.2
										7.0	16.2	9.9	13.0	725	95	21	3.1
										7.0	16.2	15.0	209.7	10390	1402	220	26.7
										7.0	16.2	15.0	192.1	9871	1328	212	23.9
	тся.рт	14-AUG	-8 1045	22-AU6	-8 1200 70%.	PT 14-AUG	-8 IV45	5 22-AUG	-8 1200	8.1	16.2	:	15.5	1612	154	35	4.2
										8.1	16.2	2 4.9	15.6	1025	144	31	3.6
										8.1	16.2	2 9.9	7 17.8	692	<del>9</del> 9	35	3.2
_		4								8.1	. 16.2	2 9.9	7 16.3	687	97	20	3.0
	•									8,1	16.2	2 15.0	253.7	12829	1791	282	31.6
										8.1	16.2	2 15.0	271.7	12759	1785	261	31.0
	TOM.P1	1 22-AU6	-8 1200	) 30-AUG	-8 1113 TDM	PT 22-AU	6-8 120	0 30-AUE	6-8 111	38.0	) 15.4	4 2.	5 10.7	949	163	25	5 3.6
										8.0	) 15.4	4 2.	5 10.5	923	156	29	2.1
_										8.0	) 15.	4 7.	8 19.9	101B	153	28	3 2.3
										8.0	0 15.4	4 7.	8 22.0	1031	155	2	7 2.3
										8.	0 15.	4 13.	5 310.2	15981	2097	34	5 27.0
										8.	0 15.	4 13.	5 344.9	16139	2111	34	3 28.

LONG-TERM BIDMONITORING PROGRAM; VERTICAL FLUX PROGRAM VFXDEPD (deposition rate of particulate to the top of the sediment trap cup at deployment depth)

DATE TIME DATE TIME ITATION DEPLOY DEPLOY RETRVE RETRVE	TRAP VOL (1)	SESTON CONC (mg/l)	PC CDNC {ug/1}	PN CDNC (ug/1)	PP CDNC (ug/1)	CHLORO CONC (ug/1)
DM.PT 23-JULY- 1315 30JULY-8 1455	4.0	131	6679	1000	231	55.5
	3.9	154	7848	1082	236	64.5
	2.0	175	7474	1079	249	52.2
	2.0	206	10755	1543	275	85.1
	4.0	187	8583	1190	314	83.B
	3.8	223	10009	1338	228	94.2
	2.1	394	18279	2475	616	149.7
	2.1	442	17890	2237	629	130.8
and the second	4.5	251B	126398	16923	2631	591.2
	4.5	3055	150492	20196	3338	712.5
	2.8	4380	217025	29710	4790	1106.7
TDM.PT 30-JULY- 1510 7-AUG-84 1100	2.2	138	14233	1348	212	43.9
	2.2	141	8045	1163	258	54.6
	2.2	292	16111	2282	490	50.0
	2.7	284	12231	1636	419	118.0
	3.2	3490	158478	21174	3640	648.1
λα, τη τη <b>τη τη τη τη</b> τη τ	3.2	3225	159793	21398	3620	697.4
TDM.PT 7-AUG-84 1100 14-AUG-8 1030	2.4	115	9131	1409	256	28.6
	2.4	142	9695	1409	291	35.6
	2.0	216	11828	1672	329	50.7
	2.3	182	10144	1329	292	44.0
	2.8	2365	117186	15813	2477	300.8
	2.4	2555	131282	17665	2819	317.7
TOM.PT 14-AUG-8 1045 22-AUG-8 1200	4.8	119	7769	1184	256	32.5
	4.3	134	8826	1239	269	39.7
	4.0	164	6378	913	322	29.2
	4.4	138	5821	818	166	25.1
	4.4	2110	106702	14895	2346	263.2
	4.4	2275	106841	14947	2188	259.4
TOM.PT 22-AUG-8 1200 30-AUG-8 1113	4.0	97	8613	1476	231	32.5
	4.0	<b>9</b> 5	8379	1416	263	25.4
	4.0	181	9236	1389	256	24.4
	4.0	200	9356	1402	244	24.3
	4.0	2B15	145014	19026	3144	244.9
	4.0	3130	146452	19158	3108	259.4

VFXDEPD (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

STATION	DATE Deploy	TINE Deploy	DATE RETRVE	TIME Retrve	TDTAL TIME (days)	TOTAL DEPTH (m)	CUP DEPTH (m)	SESTON (g/m2/d)	PC (ag/a2/d)	PN (mg/m2/d)	PP (mg/m2/d)	CHLORO (mg/m2/d)
R-78	17-5EPT-84	1 21:00	24-SEPT-84	12:30	6.7	15.2	3.7	10.1	7B6	130	29	7.3
					6.7		3.7	10.0	717	115	25	7.1
					6.7		8.5	16.3	1067	150	40	8.8
					6.7		8.5	17.7	1185	175	39	8.2
					6.7		13.4	289.4	13440	1849	506	29.6
					6.7		13.4	319.7	12838	1929	591	35.0
R-78	24-SEPT-8	4 12:30	4-0CT-84	14:00	10.1	15.2	3.7	26.6	986	129	37	3.7
					10.1		3.7	24.2	1052	140	40	1.6
	1 <del></del>				10.1		8.5	35.9	1577	208	61	5.3
					10.1		B.5	41.7	1619	219	63	5.7
		•			10.1		13.4	445.8	17972	2399	647	31.3
	· · · •				10.1		13.4	401.6	13730	2011	597	25.4
R-78	4-0CT-84	1400	16-DCT-84	12:30	11.9	15.8	4.4	10.1	424	66	16	2.3
					11.9		4.4	9.9	515	71	19	2.3
					11.9		9.1	22.8	909	148	36	3.8
					11.9		9.1	20.8	946	145	33	4.0
					11.9		14.0	280.6	11774	1425	403	20.3
					11.9		14.0	293.5	11469	1490	391	21.2
R-78	30-NOV-B4	12.30	) 17-DEC-84	4 12:30	) 17.0	16.3	5 4.8	8.6	504	5 75	10	1.7
					17.0	ł	4.8	8.2	442	2 64	16	1.6
					17.0	i	9.5	20.4	881	114	33	2.1
					17.0	)	9.5	5 20.3	879	7 115	34	2.3
					17.0	)	14.4	244.1	165?/	5 3850	327	9.4
					17.0	)	14.4	250.5	985	2 1243	341	17.4
R-78	19-FEB-8	5 134	5 5-MAR-85	1200	14.(	17.	4 5.9	9 5.3	5 84	1 122	12	8.6
					14.(	)	5.9	9 5.3	5 69	6 128	12	2 7.7
					14.(	)	10.1	7 10.4	88	2 130	19	7.1
					14.0	D	10.	7 10.2	2 82	B 122	11	6.2
					14.0	0	15.	6 226.7	7 1189	6 1561	30	) 44.5
					14.	0	15.	6 223.2	2 1125	1 1464	29	5 43.1

i.

VFXDEPO (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

STATION	DATE DEPLOY	TIME Deploy	DATE RETRVE	TIME	TRAP Vol (1)	SESTON CONC (mg/1)	PC CONC (ug/1)	PN CDNC (ug/1)	PP CONC (ug/1)	CHLDRO CONC (ug/1)
R-78	17-SEPT-84	4 21:00	24-SEPT-8	4 12:30	4.0	77	 5962	982	220	55.6
					4.0	76	5436	875	191	53.8
					4.0	124	8086	1139	300	66.9
	•				4.0	134	8985	1329	297	62.4
					4.0	2194	101891	14016	3B37	224.5
					4.0	2424	97327	14623	4478	265.3
R-78	24-SEPT-B	4 12:30	<b>.4-0CT-84</b>	14:00	4.0	305	11309	1483	421	42.5
					4.0	277	12061	1604	460	17.9
		-			4.0	412	18097	2391	704	60.9
					4.0	478	18570	2507	718	65.4
		-			4.0	5112	206110	27517	7418	358.5
at in the					4.0	4606	157456	23060	6845	291.5
R-78	4-DCT-84	1400	16-0CT-84	12:30	4.0	137	5765	893	214	31.6
					4.1	132	6842	947	253	31.0
					4.0	310	12378	2019	487	52.3
					4.0	283	12881	1971	450	54.5
					4,0	3820	160256	19392	5489	276.9
					4.0	3995	156107	20278	5319	288.6
R-78	30-NDV-84	4 12.30	) 17-DEC-8	4 12:30	4.0	167	9812	1448	187	33.8
					4.0	158	8560	1240	317	31.2
					4.0	396	17066	2212	649	41.4
					4.0	394	17029	2232	653	44.9
					4.0	4730	320266	74610	6342	162.0
					4.0	4855	190922	24087	6617	33B.O
R-78	19-FEB-B	5 134	5 5-MAR-8	5 1200	4.0	84	13367	1940	194	137.0
					4.0	84	11072	2039	196	122.0
					4.0	165	14030	2060	308	113.0
					4.0	163	13161	1935	284	98.2
· · ·					4.0	3605	189187	24B24	4770	) 708.(
					4.(	) 3550	178928	23286	4710	) 697.(

LONG-TE VFXDEPD	RM BIOMONI (Depositi	ITORING	PROGRAM: V e of particu	ERTICA lates	AL FLUX to the	PROGR top o	AM (VF if the	X) sediment	trap cup	at deploye	ent dept	h)
STATION	DATE Deploy	TINE Deploy	DATE Retrve r	TINE	TOTAL TIME (days)	TDTAL Depth (n)	CUP DEPTH (m)	SESTON (g/m2/d)	PC (ag/a2/d)	PN (ag/a2/d)	PP (ag/a2/d)	CHLORD (ag/a2/d)
R-78	1-APR-85	1220	LOST TRAP N	IOT RE	SET UN	1L 27-	-NAY-85	5				
R-78	27-MAY-85	1215	5-JUNE-85	1520	9.1	15.7	4.2	5.9	421	56	<b>9</b> 3	3.4
					9.1		4.2	5.5	445	50	95	2.8
					9.1		9.0	14.2	738	85	19	5.6
	-				9.1		9.0	16.9	843	90	18	5.6
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				9.1		13.9	249.3	11162	1439	382	66.3
				•	9.1		13.9	236.5	14427	1779	348	40.6
R-78	5-JUNE-85	1520	18-JUNE-85	1450	13.0	15.8	4.3	5.1	493	66	11	3.2
					13.0		4.3	5.6	489	60	10	3.6
					13.0		9.0	9.3	637	74	18	3.7
					13.0		9.0	9.4	604	71	14	3.9
					13.0	н. 13 1	13.9	110.7	5423	650	176	16.6
	•				13.0	1	13.9	117.6	5735	696	203	16.6
R-78	18-JUNE-8	85 1450	27-JUNE-85	1130	B.9	15.8	4.3	8.4	618	107	14	5.2
					8.9	•	4.3	5 7.3	608	106	13	4.9
					8.9	7	9.1	10.3	783	5 123	17	5.1
					8.9	7	9.1	1 11.0	) 73	3 112	17	5.6
					8.9	7	14.0	96.1	449	5 594	15	i 13.4
					8.9	9	14.0	96.2	2 494	620	15	i 14.9

R-78 VFK PROGRAM DISCONTINUED AT THIS LOCATION AS DF 27-JUNE-85

<u>8-5</u>

****				T146	TRAD	OF CTON				011 000
CTATION	DEDLOV	11AL	DETOUE	DETRUE	IKBP	5E5 IUN	PL CONC	PN CONC	PP CONC	CHLUKU
518110	DEPLUT	DEPLUT	REIRVE	KEIKVE	VUL		6086 (	LURL		LURL
					(17	(#g/1/	(ug/1)	(ug/1)	(ug/1)	(ug/1)
R-78	1-APR-85	1220	LOST TRAP I	NOT RESE	T UNTI	L 27-MAY-	85			
R-78	27-MAY-85	1215	5-JUNE-85	1520	4.0	61	4384	586	970	35.6
					<b>4.</b> 1	56	4521	508	960	28.2
					4.0	148	7678	886	202	58.6
					4.0	176	8769	938	192	57.9
					4.0	2595	116174	14974	3980	690.3
			• •		4.0-	2462	150160	18516	3620	422.2
R-78	5-JUNE-85	1520	18-JUNE-85	1450	4.0	76	7293	971	162	47.0
-				н А.	4.0	83	7237	888	141	53.3
					4.0	138	9422	1097	270	55.4
4 ¹					4.0	139	8940	1044	207	58.1
					4.0	1638	B0241	9621	2610	245.(
		•			4.0	1740	84868	10300	3000	245.0
R-78	18-JUNE-8	5 1450	27-JUNE-85	i 1130	4.0	85	6239	1085	137	52.1
					4.0	74	6138	1068	131	47.0
					4.0	104	7910	1241	168	51.3
					4.0	112	7452	1128	175	58.6
					4.0	971	45396	5999	153	135.4
					4 0	070	40077	1717	151	( 5 4

R-78 VFK PROGRAM DISCONTINUED AT THIS LOCATION AS OF 27-JUNE-85

LONG-TERM BIDMONITORING PROGRAM: VERTICAL FLUX PROGRAM (VFX)

ری معنو رو تعور

-

4.1

LONG-TERM BIDMONITORING PROGRAM; VERTICAL FLUX PROGRAM VFXDEPD (deposition rate of particulate to the top of the sediment trap cup at deployment depth)

STATIO	DATE N DEPLOY	TIME Deploy	DATE ( retrve	TIME	TDTAL TIME (days)	TDTAL Depth ( ( )	CUP Depth (m)	SESTDN (g/m2/d)	PC (mg/m2/d)	PN (mg/m2/d)	PP (ag/a2/d)	CHLORO (mg/m2/d)
R-64	23-JULY-84	1745	30-JULY	- 1010	6.7	16.0	3.8	2.7	424	71	9	6.6
					6.7	16.0	3.8	2.7	336	58	7	4.5
					6.7	16.0	3.8	1.2	145	24	4	1.8
					6.7	16.0	3.8	1.0	114	20	3	1.4
					6.7	16.0	7.8	4.0	389	62	8	3.8
					6.7	16.0	7.8	4.1	414	68	9	4.3
	•				6.7	16.0	7.8	2.5	235	36	7	2.0
					6.7	16.0	7.8	2.1	234	40	6	2.4
					· 6.7	16.0	13.7	128.1	6507	950	110	31.6
					6.7	16.0	13.7	105.8	5784	829	96	27.8
					6.7	16.0	13.7	108.3	5726	811	43	25.9
					6.7	16.0	13.7	106.2	5897	837	101	26.8
R-64	30-JULY-84	4 1045	7-AUG-8	4 1250	8.1	16.1	3.9	3.5	429	72	16	2.8
					8.1	16.1	3.9	3.B	554	96	13	3.2
					8.1	16.1	7.9	2.0	270	45	7	2.3
	an a sana ng				8.1	16.1	7.9	2.4	239	38	6	1.9
					8.1	16.1	13.8	42.4	2351	353	46	12.4
					B.1	16.1	13.8	42.8	2289	346	46	12.0
R-64	7-AUG-84	1230	14-AUG-	9 1230	7.0	16.5	4.3	2.7	531	86	13	2.0
					7.0	16.5	4.3	2.7	500	81	11	i <b>.</b> 8
					7.0	16.5	8.3	3.4	438	70	10	2.1
					7.0	16.5	8.3	3.5	468	74	10	2.3
					7.0	16.5	14.2	20.8	1523	227	29	5.5
	-				7.0	16.5	14.2	26.8	1625	240	32	5.8
R-64	14-AUG-B4	1230	22-AUG-	B 910	6.9	16.8	4.6	7.0	746	130	20	2.7
					6.9	16.B	4.6	7.0	756	132	20	2.8
					- 6.9	16.8	8.6	8.1	550	87	13	2.4
					6.9	16.B	8.6	7.9	541	85	12	2.0
					6.9	16.8	14.5	62.6	3330	497	61	9.9
					6.9	16.B	14.5	63.3	2914	460	55	8.8
R-64	22-AUG-84	910	30-AUG-	8 1400	8.2	16.B	4.6	16.B	1929	373	57	6.7
					8.2	16.8	4.6	10.7	1449	258	35	4.3
					8.2	16.8	8.6	10.2	844	151	20	2.3
					8.2	16.8	8.6	9.7	812	140	20	2.6
					8.2	16.0	14.5	193.5	B416	1260	160	18.7
					8.2	16.8	14.5	192.7	8334	1236	157	18.7

LONG-TERM BIDMONITORING PROGRAM;VERTICAL FLUX PROGRAM VFXDEPD (deposition rate of particulate to the top of the sediment trap cup at deployment depth)

-	STATION	DATE Deploy	TIME Deploy	DATE RETRVE	TIME RETRVE	TRAP VDL (1)	SESTON CONC (mg/1)	PC CONC (ug/1)	PN CONC (ug/1)	PP CONC (ug/1)	CHLORO CONC (ug/1)
-	R-64	23-JULY-84	1745	30-JULY-	- 1010	3.8	22	3399	567	72	52.7
				· · ·		3.7	22	2804	484	58	37.9
				ì		2.1	17	2131	350	55	26.2
				•		2.3	13	1497	265	43	18.0
						3.9	31	3080	487	66	29.9
						3.7	34	3441	564	74	36.0
						2.3	33	3167	480	88	26.5
	1. 1. 1.		ί.	•		2.1	30	3411	586	92	35.6
			الديسر	ι		3.9	1006	51104	7462	867	248.2
						3.7	864	47250	6768	787	227.4
	- 23.5° 					2.2	1490	78797	11162	586	356.3
						2.2	1502	83405	11836	1427	379.0
-	R-64	30-JULY-B4	1045	7-AUG-B4	1250	2.6	50	6132	1034	228	39.5
						2.4	58	8504	1477	202	48.5
						2.9	25	3392	561	90	28.4
-						2.1	41	41B2	668	105	33.4
						2.4	648	35942	5404	696	189.5
						2.7	580	31000	4686	624	163.0
	R-64	7-AU6-84	1230	14-AUG-	8 1230	2.4	36	7035	1140	178	26.0
						2.0	42	7858	1277	180	29.0
						2.1	53	6821	1094	14B	32.7
						2.3	48	6467	1023	133	31.2
						2.4	279	20423	3048	395	74.3
						2.3	365	22172	3277	430	79.0
_	R-64	14-AU6-84	1230	22-AUG-	8 410	4.1	54	5795	1011	154	21.3
-						4.0	55	5949	1038	159	21.7
						4.0	64	4325	686	103	18.9
						4.0	63	4256	670	91	16.0
						4.1	486	25872	3863	473	77.1
۱۰. 	-					4.0	<b>49</b> B	22918	3619	435	69.6
	R-64	22-AUG-B4	910	30-AUG-	8 1400	4.1	153	17610	3407	520	61.1
						4.1	99	13395	2382	328	40.2
						4.1	93	7707	1376	185	20.7
						4.1	89	7415	1281	185	23.3
						4.3	1685	73275	10972	1393	162.6
						4.4	1640	70912	10518	1777	150 D

्र

VFXDEPO (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

STATION	DATE Deploy	TIME Deploy	DATE RETRVE	TIME RETRVE	TDTAL TIME (days)	TOTAL Depth (m)	CUP Depth (m)	SESTON (g/m2/d)	PC (mg/m2/d)	PN (mg/m2/d)	PP (mg/m2/d)	CHLDRO (mg/m2/d)
R-64	17-SEPT-B4	1813	24-SEPT-84	0921	6.6	17.7	4.3	5.4	600	99	13	5.7
					6.6		4.3	5.4	585	94	11	5.9
					6.6		8.5	7.9	5B7	96	11	5.4
					6.6		8.5	6.9	608	91	12	5.5
					6.6		15.4	116.7	5955	873	127	20.7
	•				6.6		15.4	121.4	6294	962	131	28.9
R-64	24-SEPT-B	4 0930	4-DCT-84	1030	10.0	17.5	4.2	10.6	499	79	16	3.5
					10.0		4.2	15.7	491	77	-16	3.7
					10.0		8.4	22.7	992	152	19	3.9
					10.0		8.4	27 <b>.</b> B	742	126	20	4.5
					10.0		15.3	270.7	10519	1462	220	25.0
					10.0		15.3	314.5	11813	1641	259	29.8
R-64	4-DCT-84	1030	16-DCT-84	2115	12.5	17.6	4.6	6.1	483	79	13	6.1
					12.5		4.6	5.7	485	77	14	6.7
					12.5		9.7	9.4	611	71	15	4.9
					12.5		9.7	10.4	598	87	15	5.4
					12.5		15.1	153.7	5649	799	161	18.9
					12.5		15.1	154.7	5500	759	145	17.0
R-64	30-NDV-84	0945	17-DEC-84	LDST								
R-64	19-FEB-85	5 0930	5-HAR-85	0900	14.0	18.6	5.6	1.6	325	58	4	3.2
					14.0		5.6	2.0	378	3 54	6	3.3
					14.0		10.7	5.0	678	98	12	5.3
					14.0		10.7	5.0	649	7 107	8	5.:
					14.0		16.1	96.5	5126	666	95	5 35.3
					14.0		16.1	92.4	494)	7 672	97	28.
R-64	1-APR-B	5 0915	15-APR-B	5 1000	14.0	17.	7 4.7	5.6	. 88	0 112	! 11	17.
					14.0	)	4.7	7.0	99	4 130	) 11	19.
					14.0	)	9.1	3 13.2	106	0 199	20	12.
					14.0	)	9.1	9 11.8	107-	4 164	1	5 18.
					14.0	)	15.2	2 57.5	290	9 525	5 50	8 22.
					14.0	)	15.2	2 59.6	255	7 443	5 5	3 15.
R-64	15-APR-B	5 1015	5 30-APR-B	5 TR	AP LOST	· 17.	7					

<u>8-9</u>

VFXDEPO (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

STATION	DATE Deploy	TIME Deploy	DATE RETRVE	TINE Retrve	TRAP Vol (1)	SESTON CDNC (mg/1)	PC CONC (ug/1)	PN CDNC (ug/1)	PP CONC (ug/1)	CHLORD CONC (ug/1)
R-64	17-SEPT-84	1813	24-SEPT-84	0921	4.0	41	4537	747	96	43.1
1996 - E. S.					4.0	41	4421	712	85	44.6
1. A.	н. 1917 - Полон				4.0	59	4440	724	85	40.5
					4.0	52	4594	686	89	41.4
					4.0	882	45012	6597	957	156.2
					4.1	906	46987	7179	978	215.7
R-64	24-SEPT-B	4 0930	4-0CT-84	1030	4.0	121	5715	906	187	40.2
					4.0	180	5622	878	187	42.6
					4.0	260	11356	1743	222	44.3
					4.0	318	8496	1444	232	51.9
					4.0	309B	120390	16730	2523	285.7
•. • •	-				4.5	3200	120186	16698	2635	303.2
R-64	4-0CT-84	1030	16-DCT-84	2115	4.0	87	6856	1116	179	86.3
					4.0	B1	6888	1091	202	95.6
					4.0	134	8678	1296	216	69.4
					4.5	132	7550	1103	190	67.6
					4.1	2155	79184	11204	2257	265.3
					4.0	2195	78065	10767	2061	241.9
R-64	30-NOV-84	4 0945	17-DEC-B	4 LOST						
R-64	19-FEB-8	5 0930	5-NAR-85	0900	4.0	26	5176	918	61	51.1
					4.0	31	6017	858	89	52.0
					4.0	79	10767	1560	191	81.8
					4.0	80	10336	1708	130	80.8
					4.(	1538	81701	10613	1510	563.
					4.(	) 14/2	18836	10/1/	1550	404.
R-64	1-APR-8	5 0915	5 15-APR-6	35 1000	4.(	) 90	14074	1787	177	271.
					4.(	112	15893	2082	170	317.
-					4.0	211	16956	31B4	320	) 194.
					4.1		17185	2619	233	2 278.
					4,1	920	46527	8375	930	J 351.
					4,	J <b>734</b>	40892	. /086	85	244.

VFXDEPO (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

STATION	DATE I Deploy	TIME Deploy	DATE. RETRVE	TIME Retrve	TDTAL TIME (days)	TDTAL DEPTH (m)	CUP DEPTH (s)	SESTON (g/m2/d)	. PC (mg/m2/d)	PN (mg/m2/d)	PP (ag/a2/d)	CHLORO (mg/m2/d)
R-64	30-APR-85	1020	8-MAY-85	1130	8.1	17.6	4.6	3.9	761	94	3	8,0
					8.1		4.6	5.0	769	- 79	9	8.1
					8.1		9.7	17.9	1229	183	23	11.9
					8.1		9.7	18.0	1098	163	21	9.9
					8,1		15.1	93.7	11031	1651	102	32.6
					8.1		15.1	99.6	14295	2090	104	35.0
R-64	27-MAY-85	0900	5-JUNE-85	1730	9.4	17.1	4.1	3.5	463	76	8	4.4
					9.4		4.1	2.1	<b>4</b> 90	90	8	4.9
					9.4		9.1	3.7	373	56	7	3.3
					9.4		9.1	3.9	432	62	7	3.9
					9.4		14.5	34.7	1660	222	41	7.6
					9,4		14.5	35.8	1784	248	41	9.6
R-64	5-JUNE-85	1740	18-JUNE-85	1015	12.7	17.0	4.0	3.0	328	45	5	2.7
					12.7		4.0	3.9	491	7B	7	2.7
					12.7		9.1	5.3	461	61	6	4.7
					12.7		7.1	4.9	50B	75	7	5.0
					12.7		14.5	39.7	1542	185	32	9.0
					12.7		14.5	38.6	1555	190	30	8.8
R-64	18-JUNE-8	5 1025	25-JUNE-85	1630	7.3	17.3	4.3	6.8	528	84	9	4,4
					7.3		4.3	5.0	734	129	11	6.3
					7.3		9.3	6.0	617	100	10	5.0
					7.3		9.3	6.2	756	117	10	5.8
					7.3		14.7	30.9	1596	232	40	8.8
					7.3		14.7	32.1	2032	287		8,4

.FXDEPD (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

TATION	DATE	TIME	DATE RETRVE	TIME RETRVE	TRAP VOL (1)	SESTON CONC (mg/l)	PC CDNC (ug/1)	PN CONC (ug/1)	PP CONC (ug/1)	CHLORD CONC (ug/1)
 R-64	 30-APR-85	1020	8-MAY-85	1130	4.0	36	 6984	863	28	73.5
					4.0	46	7057	911	85	74.4
					4.0	164	11280	1679	207	109.5
					4.0	166	10073	1499	195	91.3
					4.0	860	101234	15148	940	298.9
					4.3	850	122029	17843	<b>89</b> 0	298.9
R-64	27-MAY-85	0900	5-JUNE-85	1730	4.0	37	4934	812	89	47.4
			ten (ge		4.2	. 22	4970	911	83	49.6
					4.0	39	3971	594	74	35.2
					4.0	42	4607	656	79	41.1
					4.0	370	17697	2370	440	81.0
_					4.0	382	19014	2643	440	102.7
R-64	5-JUNE-85	1740	18-JUNE-85	1015	4.0	43	473B	648	65	39.6
					4.0	57	7108	1123	96	38.5
	1.00	··· · •	•* ·		4.0	76	6664	877	93	68.1
					4.0	71	734B	1086	108	71.8
					4.0	574	22304	2676	460	130.0
					4.0	558	22501	2754	440	127.8
R-64	18-JUNE-8	5 1025	25-JUNE~85	1630	4.0	56	4361	693	73	36.4
					4.0	41	6065	1068	93	52.3
					4.0	50	5103	828	80	41.7
					4.0	51	6251	964	84	<b>4</b> 8.0
					4.0	256	13193	1919	330	72.9
					4,0	26E	16796	2370		69.2

STATION	DATE DEPLOY	TIME Deploy	DATE RETRIEVE I	TIME RETRIEVE	TDTAL TIME (days)	TOTAL Depth (a)	CUP DEPTH (m)	SESTON (g/m2/d)	PC (mg/m2/d)	PN (mg/m2/d)	PP (mg/m2/d)	CHLORO (mg/m2/d)
R-64	25-JUNE-8	5 1700	11-JULY-85	1130	15.8	17.5	4.5	4.2	563	91	12	2.8
					15.8		4.5	4.4	514	78	. 9	3.6
					15.8		9.6	9.1	415	62	7	2.9
					15.8		9.6	8.3	449	63	13	2.8
					15.8		15.0	100.1	3656	444	69	13.9
R-64	11-JULY-8	5 1210	24-JUI ¥-85	1105	13.0	17.5	4.5	9.5	637	104	17	55
					13.0		4.5	18.9	634	117	15	5.8
					13.0		9.6	16.4	634	105	17	4.3
					13.0		9.6	14.7	663	116	23	3.8
					13.0		15.0	215.2	7718	1044	171	21.9
					13.0		15.0	203.4	6437	882	169	21.5
R-64	24-JULY-8	5 1130	30-JULY-B5	1140	6.0	17.2	4.2	8.5	997	184	19	10.2
-	اي بيور مر				6.0		4.2	10.9	814	149	20	9.9
					6.0		9.2	18.1	1244	225	20	10.9
					6.0		9.2	16.2	1110	192	21	10.8
					6.U 6.U	l L	14.6	102.2	5/37 3400	564	108	21.9
					0.0		17.0	72.3	J <del>1</del> 07	JZZ	70	23.1
R-64	30-JULY-E	15 1157	5-AUG-85	0945	5.9	17.3	4.3	7.0	753	114	11	13.8
					5.9	1	4.3	9.1	799	131	12	15.6
					5.5	†.	9.3	21.2	837	141	38	12.1
					, a 1	1	7.3		) 673	5 103 N 057	18	10.5
						7. 3	14,7	12/11	0774	( 8000 ) 010	192	27.0
_			-			,	171/	100.		012	120	) 27.0
R-64	5-AUG-8	5 0950	13-AU6-85	1230	8.1	1 17.	5 4.3	5.6	5 724	114	5	13.4
					8.	ł	4.3	6.(	628	3 9B	5	13.7
					8.	1	. 9.3	15.1	89 - 88	5 134	15	5 11.0
					ö.	1		) 10,4	H YU; D EAD		14	11.9
					ь. Э	1 1	14.7	128, 177 ⁽	/ JUZ	D 001 D 114	81	) 30.2 t 71.6
					υ.	1	17.1	12/*	4 909)		7.	5 51.0
R-64	13-AUG-8	5 1230	20-AU <del>G</del> -85	1400	8.	0 16.	8 3.1	3 5.1	5 59	3 98	1(	0 6.1
					8.	0	3.1	3 7.	0 62	3 104	1	2 5.0
		•			8.	0	8.1	B 9.	1 62	1 82	1	6 4.6
					8.	0	8.	B 10.	2 59	3 97	1	0 5.3
					8.	0	14.1	299,	1 378	9 511	7	7 14.
					8.	0	14.:	2 95.	6 518	4 748	8	6 15.1

-----

STATION	DATE Deploy	TINE DEPLOY	DATE RETRIEVE I	TIME RETRIEVE	TRAP Vol (1)	SESTON CONC (mg/l)	PC CDNC (ug/1)	PN CONC {ug/1}	PP CDNC {ug/1}	TOTAL CHLDRD (ug/1)	ACTIVE CHLORD (ug/l)
R-64	25-JUNE-85	1700	1,1-JULY-85	1130	4.0	76	10114	1637	208	50.8	
			· ·		4.0	80	9245	1405	170	64.6	
					4.0	163	7460	1109	121	52.0	
			1 A ( 1997) 1		4.1	146	7872	1108	221	49.1	
			-		4.5	1600	58429	7088	1100	222.0	
R-64	11-JULY-B5	1210	24-JULY-85	1105	4.0	140	941B	1569	188	B1.8	
				· .	4.0	279	9372	1729	226	86.0	
		و به _{در}	5		4.0	243	9372	1556	249	63.2	
			λæ:		4.0	217	9788	1715	338	55.6	
		•			4.0	31B0	114035	15425	2520	323.0	
					4,0	3005	95105	13030	2490	318.0	
R-64	24-JULY-85	i 1130	30-JULY-85	1140	4.0	59	6834	1261	130	70.2	
					4.0	75	5578	1024	138	67.6	
					4.0	124	8520	1544	139	75.0	
					4.0	111	7605	1313	141	74.3	
	10 A. A. A. A.	r			4.0	700	25605	3861	740	150.0	
					4.0	634	23901	3578	660	158.0	
R-64	30-JULY-85	5 1157	5-AUG-85	0945	4.0	47	50B0	771	75	92.9	
					4.0	62	5391	886	81	105.0	
					4.0	143	5646	949	258	B1.6	
					4.0	118	4678	692	123	70.7	
					4.0	1262	41115	5754	1000	182.0	
					4.0	1082	40841	5478	850	196.0	
K-64	5-AU6-85	J75C	13-AU6-85	1250	4.0	51	6691	1922	85	124.0	
					4.1	54	5665	882	82	124.0	
					4.0	146	8181	1240	142	115.0	
					4.0	142	8364	1286	130	110.0	
					4.0	1190	46471	6115	790	279.0	
					4.0	1176	44821	6142	B60	287.0	
R-64	13-AUG-85	1230	20-AUG-85	1400	4.1	49	5276	873	89	54.2	
					4.0	64	5685	952	109	51.4	
					4.0	<b>B</b> 3	5666	746	146	42.1	
					4.0	93	5406	884	87	47.3	
					4.0	904	34556	4656	700	130.0	
					4.0	872	47282	6926	780	144.0	

STATION	DATE Deploy	TIME Deploy	DATE Retrieve F	TIME RETRIEVE	TDTAL TIME (days)	TDTAL DEPTH (m)	CUP DEPTH (@)	SESTDN (g/m2/d)	PC (mg/m2/d)	PN (mg/m2/d)(i	PP ng/m2/d)	CHLORD {ag/a2/d
R-64	17-SEPT-85	0945	25-SEPT-85	1740	7.8	17.6	4.6	6.4	692	114	14	13.7
					7.8		4.6	8.9	703	122	12	18.4
					7.8		9.6	18.0	892	138	21	16.1
					7.8		9.6	14.5	832	132	20	16.2
			•		7.8		15.0	140.5	5359 5266	764 788	112 108	19.6 42.1
R-64	25-SEPT-8	5 1745	1-001-05	1074	5.7	17.3	4.3	20.0	1093	147	<b>1</b> 7	0 1
			1 001 00		5.7	1/10	4.3	24.3	1025	114	24	9.3
					5.7		9.4	39.0	1104	114	30	12.1
					5.7		9.4	33.2	1168	139	28	18.
					5.7		14.8	221.5	6552	7B1	147	39.
	•				5.7		14.8	243.8	6453	757	149	37.
R-64	1-0CT-85	1024	16-0CT-85	0950	15.0	16.5	3.5	10.4	692	107	10	20.
					15.0		3.5	10.6	744	116	22	24.
					15.0		8.6	14.4	792	114	17	19
					15.0		8.6	14.8	890	128	17	32.
					15.0		14.0	117.9	4464	552	85	23
-					15.0		14.0	116.5	4125	524	83	25.
R-64	6-JAN-88	1120	17-JAN-86	1200	11.0	18.0	5.0	6.8	545	5 65	8	0
					11.0	1	5.0	) 7.5	552	2 72	8	0
					11.0		10.0	) 25.7	105(	) 127	22	0
					11.0		10.0	) 2/.1	. 110 ⁴ 500		23	0
					11.0	•	15.4	171.1	329 7 482 -	7 658 7 613	125	, U
R-64	27-FEB-8/	5 10 <b>0</b> 0	12-MAR-86	1730	12.8	18.0	0 5.5	5 1.1	8 21	6 79	l	1
					12.8	}	5.5	5 2.1	9 40	1 63	l	5 3
					12.8	}	10.	5 6.	7 55	1 83	ç	8
					12.8	3	10.	56.	1 44	3 66	-	7 4
					12.1	3	15.4	4 49. A Ex	2 275	9 349	4	7 11
					12.1	5	10.4	4 36.	6 269	0 382	5:	1 20
R-64	12-MAR-B	6 1740	) 28-MAR-86	840	15.	6 18.	35.	3 2	1 44	á 107	1	4
		- •//		~ 1 V	15.	6	5.		- 00		1: 1:	т О
					15.	6	10.	4 7.	1 51	1 82	1	0
					15.	6	10.	4 9.	7 64	6 103	1	3
					15.	6	15.	8 110.	9 474	5 689	11	3 3
					15.	6	15.	B 11B.	5 560	0 849	11	7 3

STATION	DATE Deploy	TIME DEPLOY	DATE RETRIEVE	TIME RETRIEVE	TRAP Vol (1)	SESTON CDNC (mg/1)	PC CONC (ug/1)	PN CDNC (ug/1)	PP CDNC (ug/1)	TOTAL CHLDRD (ug/1)	ACTIVE CHLORD (ug/1)
			<b>3</b> 12								
R-64	13-AUG-85	1230	20-AUG-85	1400	4.1	49	5276	873	89	54.2	
					4.V & 0	01 07	3083 5111	732 741	107	21.4 42 1	
					4.0	93	5406	884	87	47.3	
					4.0	904	34556	4656	700	130.0	
					4.0	872	47282	6826	780	144.0	
		N. 19	(								
R-64	17-SEPT-8	5 0945	25-SEPT-85	1740	4.0	57	61B0	1014	122	122.0	64.
					4.0	79	6272	1088	105	164.0	82.
-					4.0	161	7963	1234	183	144.0	78.
					4.0	129	7429	1177	178	145.0	82.
					4.0	1254	47834	6823	1000	175.0	101.
		•			4.0	1370	4/004	/031	763	3/6.0	185.
R-64	25-SEPT-8	5 1745	1-DCT-85	1024	4.0	130	7112	924	144	57.0	32
					4.0	159	6670	742	159	61.7	37
					4.0	254	7186	739	193	83.0	43.
					4.0	216	<b>760</b> 0	908	182	118.0	52.
					4.0	1442	42652	50B4	955	260.0	108.
					4.0	1587	42008	4928	973	242.0	113.
R-64	1-DCT-85	1024	16-0CT-85	0950	4.2	169	11237	1746	163	338.0	108
					4.0	191	12650	1971	371	410.0	. 71
					4.1	243	13333	1924	282	321.0	91
					4.0	252	15172	2181	295	556.0	95
					4.0	2010	76138	9410	1454	397.0	95
					4.0	1986	70344	8938	1424	430.0	95
R-64	6-JAN-86	1120	17-JAN-86	1200	4.0	85	6836	821	97		
					4.0	94	6928	899	102		
					4.0	322	13164	1597	282		
					4.0	340	13902	2031	286		
					4.0	2145	66450	8256	1572		
					4.0	2005	60320	1683	1432		
R-64	27-FEB-86	1000	12-MAR-86	1730	4.0	26	3157	410	53	21.3	17
., .					4.0	42	5854	917	89	57.4	50
					4.0	98	8041	1217	131	80.1	64
					4.0	90	6462	965	102	62.0	47
					4.0	718	40296	5094	719	273.0	185
					4.0	826	39276	5576	745	301.0	205

تى. مىسە

LONG-TERM BIDHONITORING PROGRAM	VERTICAL FLUX PROGRAM (VFX)
VEYNERD (Denosition rate of par	iculates to the top of the sediment trap cup at deployment

depth)

STATION	DATE Deploy	TIME DEPLOY	DATE Retrieve	TIME RETRIEVE	TOTAL TIME (days)	TOTAL DEPTH (m)	CUP Depth (m)	SESTDN (g/m2/d)	PC (mg/m2/d)	PN (mg/m2/d)(	PP ag/a2/d)	CHLORO (mg/m2/d)
R-64	28-MAR-86	840	14-APR-86	1015	17.1	18.3	5.3	5.5	560	76	7	9.1
					17.1		5.3	5.6	692	95	B	10.2
		•			17.1		10.4	12.4	469	78	19	11.7
					17.1		10.4	20.3	424	74	32	12.2
					17.1		15.8	118.6	2827	393	112	39.8
	•		•		17.1		15.8	115.3	2563	352	105	42.1
R-64	14-APR-86	1025	29-APR-86	845	14.9	18.0	5.0	7.5	815	108	9	9.1
					14.9		5.0	9.0	786	105	9	12.0
					14.9		10.1	16.9	1343	221	18	13.6
					14.9		10.1	19.6	2022	350	30	11.4
					14.9		15.4	152.0	6482	908	128	52.4
÷					14.9		15.4	158.2	6626	924	131	54.7
R-64	29-APR-86	922	5-MAY-86	1146	6.1	18.1	5 <b>.</b> i	6.3	726	86	. 8	8.2
					6.1		5.1	4.5	813	<b>98</b>	9	8.7
					6.1		10.2	9.3	1381	220	20	10.9
					6.1		10.2	9.7	1438	236	24	11.7
					6.1		15.6	85.7	3963	530	85	27.6
					6.1		15.6	96.1	4235	5 571	8B	31.0
R-64	5-MAY-84	5 1156	14-MAY-8(	6 1515	B.7	18.3	5.3	5 2.1	426	5 49	5	4.7
					8.7	7	5.3	2.	5 539	86 68	5	0.0
					8.7	7	10.4	6.0	) 100(	) 145	17	10,7
	•				8.1	7	10.4	7.	5 109	5 162	17	10.0
					B.:	7 .	15.1	8 63.	1 3632	2 475	- 74	22.7
					8.	7	15.6	8 65.9	377:	3 517	73	5 22.4
R-64	14-MAY-8	6 1515	19-MAY-8	6 900	5.	7 17.	B 4.	B 1.	1 45	3 51	Ţ	5 3.4
					5.	7	4.	8 1.	0 44	4 52		5 3.4
					5.	7	9.	B 4.	0 · 148	4 272	2	i 6.3
					5.	7	9.	8 2.	5 73	5 115	:	1 6.4
					5.	7	15.	2 21.	3 165	0 231	25	5 10.4
					5.	7	15.	2 20.	7 153	0 219	2	5 10. ¹

____

1.1

VFXDEPO (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

	STATION	DATE Deploy	TIME Deploy	DATE RETRIEVE	TIME RETRIEVE	TRAP VDL (1)	SESTON CONC (mg/l)	PC CDNC (ug/1)	PN CONC (ug/1)	PP CONC (ug/1)	TOTAL CHLDRD (ug/1)	ACTIVE CHLORD (ug/1)
	R-64	12-MAR-86	1740	2,8-MAR-86	840	4.0	37	11819	1912	244	130.0	109.0
				Ś.		4.0	135	8864	1279	183	40.9	31.8
						4.0	126	9095	1460	179	83.7	71.4
	944 ¹ - 1			4		4.0	172	11496	1835	226	114.0	84.7
_						4.0	1975	8448B	12274	2013	565.0	364.0
						4.0	2110	<del>9</del> 9723	15116	2081	. 695.0	563.0
	R-64	28-MAR-86	840	14-APR-86	1015	4.0	107	10912	1486	130	178.0	151.0
						4.0	110	13475	1842	151	199.0	176.0
			ورجار ور			4.0	242	9126	1518	376	227.0	176.0
				(a)		4.0	396	8249	1440	627	237.0	168.0
_	·		•			4.0	2310	55037	7660	2172	775.0	546.0
	 	~				4.0	2245	49910	6852	2039	B19.0	714.0
, ·	R-64	14-APR-86	1025	29-APR-86	845	4.0	128	13856	1B40	155	155.0	139.0
	-					4.0	153	13377	1791	160	204.0	176.0
						4.0	287	22840	3763	29B	231.0	205.0
						4.0	334	34399	5947	511	194.0	126.0
			المهري مر			4.0	25B5	110256	15437	2181	892.0	504.0
						4.0	2690	112695	15712	2231	931.0	504.0
—	R-64	29-APR-86	922	5-MAY-86	1146	4.0	43	5031	599	53	56.7	56.7
						4.0	31	5632	676	62	60.1	56.7
	·					4.0	65	9571	1523	141	75.6	
						4.0	67	9966	1633	165	81.4	75.6
						4.0	594	27469	3671	590	191.0	99.2
						4.0	666	29352	3960	611	215.0	132.0
	ñ-64	5-MA¥-80	5 1156	14-MAY-60	1513	4.0	21	4210	485	52	46.5	. 39.7
						4.0	25	5326	674	51		
						4.0	60	9886	1434	169	106.0	109.0
						4.0	76	10820	1601	171	98.9	88.2
						4.0	624	35895	4892	731	224.0	152.0
						4.0	642	37292	5107	721	221.0	139.0
	R-64	14-MAY-B	6 1515	19-MAY-8	6 <b>90</b> 0	4.0	7	2 <b>95</b> 3	334	20	22.3	19.6
						4.0	7	2895	340	21	22.1	18.9
						4.1	25	9440	1730	133	40.2	35.7
						4.0	16	4791	749	46	41.7	37.8
						4.0	139	10761	1509	160	67.8	42.3
						4.0	135	<b>998</b> 0	1428	168	68.4	42.3

LONG-TERM BIDMONITORING PROGRAM: VERTICAL FLUX PROGRAM (VFX) VFXDEPO (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

STATION	DATE Deploy	TIME Deploy	DATE Retrieve	TIME	TDTAL TIME (days)	TOTAL DEPTH (m)	CUP Depth ()	SESTDN (g/m2/d)	PC (ag/a2/d)	PN (mg/m2/d) (	PP mg/m2/d)	CHLORD (ag/a2/d)
R-64	19-MAY-86	920	28-NAY-86	1545	8.8	17.5	4.5	3.7	493	68	6	3.4
					8.8 8.8		<b>7.6</b> 15.0	7.3 101.3	939 4649	158 630	12 80	2.4 15.1
R-64	28-MAY-86	1550	3-JUNE-86	730	5.7	17.5	4.5	2.0	465	69	6	2.6
	•				5./		. 4.5	2.5	511	80	1	3.2
					J./ 57		7.0	4.2	000	118	10	2.2
-				• •	. J./ 57		7.0 (E A	4.J 70.7	1037	171	15	3.7
	•		-		5.7		15.0	42.5	1993	284	55 41	7.4
R-64	3-JUNE-86	734	12-JUNE-84	5 911	9.0	17.3	4.3	2.8	261	41	, , , <b>4</b>	2.0
					9.0		4.3	1.9	289	49	. 4	2.5
			*		9.0		9.3	4.7	549	91	8	2.7
	•				9.0		9.3	4.9	472	77	6	3.1
	ريد جمهدي ريمين				9.0		14.7	88.0	3265	429	69	13.4
					9.0		14.7	82.7	3561	451	B6	13.4
R-64	12-JUNE-8	6 922	16-JUNE-B	6 900	4.0	17.4	4.4	1.5	660	122	7	6.5
					4.(		4.4	0.5	522	99	7	5.4
					4.(		9.5	2.4	601	99	6	4.B
					4.(	)	7.3	1.1	249	/ 101	8	5.2
					4.(	)	14.8	18.4	1226 1228	178 175	21 22	9.9 9.7
	. <b>.</b>											
R-64	16-JUNE-8	36 920	24-JUNE-B	6 1230	6.1	17.4	4.4	6.6	5 734	133	10	4.E
					8.3	L .	4.4	5.0	5 433	5 74	11	3.9
					8.	l	9.5	13.1	1 842	2 140	14	5.2
					8.	1	9.5	12.	b 823	2 135	12	5.0
					8.	1	14.8	s 75.1	5 . 420	2 607	81	16.9
					8,	1	14.8	a y2.	1 399	5 579	80	17.

VFXDEPD (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

	STATION	DATE Depldy	TIME Deploy	DATE RETRIEVE	TIME RETRIEVE	TRAP Vol (1)	SESTON CONC (mg/1)	PC CONC (ug/1)	PN CONC (ug/1)	PP CONC (ug/1)	TOTAL CHLORO (ug/1)	ACTIVE CHLDRD (ug/1)
	R-64	19-MAY-86	920	28-MAY-86	1545	4.0	37	4913	683	61	33.9	25.2
				Ś.		4.1	71	9137	1537	118	23.5	9.2
				۰ ه		4.0	1010	46378	6284	797	151.0	75.6
	R-64	28-MAY-86	1550	3-JUNE-86	730	4.0	13	3012	449	36	17.1	11.2
						4.0	16	3310	517	45	20.9	15.9
						4.0	27	4315	763	64	14.3	9.3
						4.0	29	6715	1236	85	25.5	17.9
	-					4.0	257	14405	2070	224	48.8	23.8
•			¹	Anne		-4.0	275	12902	1840	267	48.2	21.2
	R-64	3-JUNE-86	734	12-JUNE-BA	5 911	4.0	29	2679	423	44	20.4	9.7
						4.0	19	2957	499	40	26.0	15.9
						4.0	49	5624	934	85	27.9	15.3
						4.0	50	4842	792	66	31.7	19.3
						4.0	902	33465	4397	706	137.0	46.3
						4.0	848	36495	4627	881	137.0	39.7
	R-64	12-JUNE-9	6 922	16-JUNE-80	5 900	4.0	7	2985	550	33	29.5	22.5
						4.0	. 4	2363	447	31	24.4	17.2
						4.0	11	2720	449	29	21.6	10.2
						4.0	8	2485	455	37	23.4	14.2
						4.0	84	5548	806	97	44.6	23.1
						4.0	89	5536	790	99	44.1	21.0
	R-68	14-JUNE-8	A 920	74111NE-8	6 1230	<b>A</b> . 0	61	6781	1226	40	44 0	24 5
	~ •/	10 0000 0	U /LV	LI VUIL UI	- 1244	4.0	57	3997	407	105	71.0	20.3
						4.0	121	7774	1792	132	48.2	26 3
						4.0	115	7591	1250	113	46.1	- 2013
						4.0	882	38799	5604	750	156.0	46.1
						4.0	850	36889	5345	740	157.0	66 1

VFXDEPD (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

STATION	DATE Deploy	TIME Deploy	DATE Retrieve	TIME RETRIEVE	TOTAL TIME (days)	TDTAL DEPTH (m)	CUP Depth (=)	SESTON (g/m2/d)	PC (mg/m2/d)	PN (mg/m2/d)	PP (ag/a2/d)	CHLDRD (æg/æ2/d)
DARESBCH	11-JUL-85	1530	24-JUL-85	913	12.8	9.9	2.9	26.6	1385	210	32	7.2
					12.8		2.9	19.0	1277	221	37	6.9
					12.8		5.9	39.1	1703	264	39	8.9
					12.8		5.9	34.5	2109	350	48	8.8
					12.8		8.4	109.0	4939	686	142	17.6
	•				12.8		8.4	103.9	5273	755	164	17.5
DARESBCH	24-JUL-85	937	30-JUL-85	1035	6.0	9.8	2.8	20.6	1584	259	32	10.1
	•				6.0		2.8	20.2	1217	241	32	8.7
					6.0		5.8	39.8	2261	337	50	12.8
					6.0		5.8	37.5	2832	367	46	12.6
					6.0		8.2	163.7	7752	1077	181	28.9
-					6.0		8.2	155.3	6442	908	174	26.6
DARESBCH	30-JUL-85	1035	05-AU6-85	900	5.9	9.B	2.8	50.2	2630	389	66	18.6
	- me# 7				5.9		2.8	51.6	2567	363	67	18.2
					5.9		5.8	80.9	4368	601	87	19,8
					5.9		5.8	91.0	4014	559	95	23.3
					5.9		8.2	202.9	9229	1293	196	44.3
					5.9		8.2	197.3	9229	1246	195	46.1
DARESBCH	05-AUG-85	915	13-AUG-85	900	8.0	10.0	3.0	20.5	1545	235	26	10.4
•					8.0		3.0	33.7	1453	229	32	12.8
					8.0		6.0	41.8	2089	303	45	18.2
					8.0		6.0	46.5	2311	337	47	30.6
					8.0		8.5	97.4	6323	855	540	25.3
					8.0		8.5	145.9	6373	907	716	34.5
DARESBCH	13-AUG-85	900	21-AU6-85	1430	7.5	10.0	3.0	46.3	2339	280	51	11.6
					7.5		3.0	44,4	2391	326	44	12.4
					7.5		6.0	B0.0	2310	288	83	18.1
					7.5		6.0	80.0	3290	363	103	16.3
					7.5		8.5	182.4	7174	1078	169	30.7
					7.5		8.5	215.8	8431	1177	188	35.1
DARESBCH	17-SEP-85	825	25-SEP-85	1805	7.9	10.0	3.0	35.9	1702	262	36	16.0
					7.9		3.0	32.6	1430	224	32	16.7
					7.9		6.0	59.4	2489	398	- 52	28.7
					. 7.9		6.0	62.7	2510	404	53	29.7
					7.9		8.5	176.8	7147	1028	154	52.3
					7.9		8.5	171.8	6683	984	152	48.7
DARESBCH	25-SEP-B5	1810	01-0CT-85	1200	5.8	9 <b>.9</b>	2.9	14B.9	5369	645	134	24.3
					5.8		2.9	200.2	5101	613	127	23.3
					5.B		5.9	228.4	8685	1076	189	34.2
					5.8		5.9	243.5	8109	1001	205	35.7
					5.8		8.3	482.8	19395	2305	424	74.8
					5.8		8.3	472.2	19005	2156	537	72.3

VFXDEPO (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

STATION	DATE Deploy	TIME DEPLOY	DATE RETRIEVE	TIME	TRAP VOL (1)	SESTDN CDNC (mg/1)	PC CDNC (ug/1)	PN CONC (ug/l)	PP CONC (ug/1)	TDTAL CHLORD (ug/1)	ACTIVE CHLORD (ug/l)
DARESBCH	11-JUL-85	1530	24-JUL-85	913	4.0	386	20129	3058	464	104.0	
		1			4.0	276	18560	3205	537	101.0	
			•		4.0	56B	24746	3830	570	129.0	
					4.0	502	30656	5080	700	128.0	
					4.0	1585	71790	9975	2060	256.0	
					4.0	1510	76640	10970	2390	255.0	
DARESBCH	24-JUL-85	937	30-JUL-85	1035	4.0	142	10906	1786	219	69.2	
		New Y			4.0	139	8377	1359	222	59.7	
					4.0	274	15570	2317	342	88.4	
					4.0	258	19498	2528	314	86.6	
					4.5	1002	47444	6589	1110	177.0	
					4.1	1043	43274	6100	1170	179.0	
DARESBCH	30-JUL-85	1035	05-AU6-85	900	4.2	324	16958	2506	42B	120.0	
		•			4.1	341	16958	2396	440	120.0	
					4.0	54B	29572	4072	590	134.0	
					4.0	616	27181	3788	640	158.0	
					4.0	1374	62494	8755	1330	300.0	
					4.0	,1336	62494	8440	1320	312.0	
DARESBCH	05-AUG-85	915	13-AUG-85	900	4.0	186	14016	2134	237	94.0	
					4.0	306	13187	2080	291	116.0	
					4.0	379	18958	2752	405	165.0	
					4.0	422	20968	3054	430	167.0	
					4.0	884	57378	8126	980	231.0	
					4.0	1324	57B35	8231	1300	313.0	
DARESBCH	13-AUG-85	900	21-AUG-85	1430	4.0	395	19941	2390	437	98.9	
					4.0	379	20390	2778	378	106.0	
					4.0	6B2	19694	2460	710	154.0	
					4.0	682	28054	3096	880	139.0	
					4.0	1555	61775	9195	1440	262.0	
					4.1	1795	70135	9790	1560	292.0	
DARESBCH	17-SEP-85	B25	5 25-SEP-8	5 1805	4.0	323	15310	2353	328	144.0	104.
					4.0	293	12858	2013	290	150.0	52.
					4.0	534	22387	3582	469	258.0	113.
					4.0	564	22572	3634	475	267.0	131.
					4.0	1590	64286	9245	1387	470.0	160.
					4.0	1545	60138	8854	1365	438.0	160.
DARESBCH	25-5EP-85	181(	) 01-0CT-8	5 1200	4.0	976	35192	422B	879	159.0	47.
					4.0	920	33440	4020	831	153.0	52.
					4.0	1497	56932	7056	1240	224.0	82.
					4,6	1596	53156	6562	1341	234.0	95.
					4.0	3165	127130	15110	2780	490.0	147.
					4.0	3095	124595	14135	3518	474.0	156

VFXDEPD (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

STATION	DATE Deploy	TIME Deploy	DATE RETRIEVE	TIME RETRIEVE	TOTAL TIME (days)	TOTAL DEPTH (m)	CUP Depth (#)	SESTON (g/m2/d)	PC (ng/n2/d)	PN (mg/m2/d)	PP (mg/m2/d)	CHLORO (mg/m2/d)
DARESBCH	01-0CT-85	1200	16-0CT-85	1045	15.0	10.0	3.0	48.2	2579	329	43	17.6
					15.0		3.0	54.0	2563	299	47	17.9
					15.0		6.0	87.4	3863	488	. 76	33.4
					15.0		6.0	114.5	3838	493	79	37.8
					15.0		8.4	169.6	8904	1009	154	86.8
					15.0		8.4	166.3	8053	980	151	58.3
DARESBCH	06-JAN-86	1400	17-JAN-86	1415	11.5	10.0	3.0	15.8	690	74	15	4.0
					11.5		3.0	15.4	852	107	14	4.1
					11.5		6.0	22.3	1066	137	23	8.8
					11.5		6.0	22.1	1140	139	23	6.8
					11.5		8.5	36.6	1610	198	36	8.6
					11.5		8.5	39.5	1660	200	45	8.B
DARESBCH	27-FEB-86	1145	12-MAR-86	1930	13.4	10.5	4.0	3.7	346	47	5	3.0
					13.4		4.0	3.8	344	44	5	3.1
	· · · · ·				13.4		7.0	9.0	709	113	14	5.8
					13.4		7.0	7.9	584	76	11	5.7
					13.4		9.0	37.3	2415	293	46	16.0
					13.4		9.0	36.8	2184	283	42	15.0
DARESBCH	12-MAR-86	<b>80</b> 0	28-MAR-86	1040	16.1	10.2	3.2	9.1	535	72	13	4.5
					16.1		3.2	9.3	651	94	15	5.4
					16.1		6.2	144.3	825	114	20	6.3
					16.1		6.2	15.1	794	108	21	4.4
					16.1		8.7	30.6	1725	231	36	11.9
					15.1		8.7	32.6	1755	243	41	12.0
DARESBCH	28-MAR-86	1050	14-APR-86	1055	17.0	10.1	3.1	6.1	615	83	8	7.3
					17.0		3.1	5.7	557	77	8	7.8
					17.0		6.1	8.2	612	B4	9	10.7
					17.0		6.1	8.9	665	85	9	11.3
					17.0		B.6	34.9	1930	248	38	20.4
					17.0		8.6	33.6	1845	242	38	20.4
DARESBCH	14-APR-86	1105	29-APR-86	1100	14.5	9.9	2.9	15.6	1024	131	16	10.8
					14.5		2.9	14.1	<del>7</del> 81	129	14	10.5
					14.5		5.9	22.0	1413	188	23	13.3
					14.5		5.9	20.9	1366	185	i 21	12.6
					14.5		8.4	52.2	2679	366	o 53	23.4
					14.5		8.4	53.1	3114	378	a 53	22.8
DARESBCH	1 29-APR-84	5 1130	5-MAY-86	1215	6.0	10.0	3.0	25.5	i 1886	202	2 25	16.4
					6.0		3.0	21.5	1572	2 197	27	12.3
					6.0		6.0	31.9	2501	305	5 38	19.5
					6.0		6.0	26.3	2185	5 268	3 33	3 22.5
					6.0	1	8.5	64.9	3323	5 408	5 69	25.3
					6.0	i i	8.5	5 69.3	2 3478	9 433	2 68	3 27.1

----

VFXDEPO (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

STATION	DATE DEPL NY	TIME DEPL DV	DATE	TIME	TRAP VDI	SESTON	PC CONC	PN	PP CONC	TOTAL Chi ord	
UTHICK	001	2 <b>21 201</b>	NETRIETE	NE HILTE	(1)	(mg/l)	(ug/1)	(ug/l)	(ug/1)	(ug/1)	(ug/1)
					4.0	3095	124595	14135	3518	474.0	156.
ARESBCH	01-DCT-85	1200	16-OCT-85	1045	4.0	822	43954	5610	733	300.0	113.
					4.0	920	43678	5084	7 <b>9</b> 5	305.0	56.
					4.0	1490	65840	8310	1292	570.0	121
					4.1	1904	63816	8204	1316	628.0	108
					4.1	2820	148045	16775	2565	1444.0	156
		North Art			4.0	2835	137240	16710	2568	993.0	195
ARESBCH	06-JAN-86	1400	17-JAN-86	1415	4.0	207	9053	974	198		
					4.0	202	11178	1402	188		
					4.0	293	13998	1800	296		
					4.0	290	14961	1823	303		
					4.0	4B0	21130	2604	477		
					4.0	518	21780	2630	590	•	
ARESBCH	27-FEB-86	1145	12-MAR-86	1930	4.0	57	5285	713	82	45.5	3
					4.0	58	5247	665	81	47.6	39
					4.0	138	10826	1721	214	88.5	6
					4.0	121	B914	1158	174	87.2	6
					4.0	570	36862	4478	709	244.0	17
					4.0	562	33334	4316	645	229.0	15
ARESBCH	12-MAR-86	800	28-MAR-86	1040	4.0	168	9834	1331	236	82.4	5.
					4.0	170	11958	1731	274	98.9	8:
					4.0	266	15143	2093	360	116.0	7
					4.0	278	14589	1790	381	80.4	. 5
					4.0	562	31671	4238	657	218.0	16
					4.0	602	32964	4470	746	220.0	17
ARESBCH	28-MAR-86	1050	14-APR-86	1055	4.0	119	11932	1621	165	142.0	13
					4.0	110	10B21	1492	162	151.0	13
					4.0	159	11887	1629	172	207.0	19
					4.0	172	12910	1656	181	219.0	18
					4.0	678	37 <b>46</b> 0	4819	739	397.0	31
					4.0	652	35823	4698	740	397.0	27
ARESBCH	14-APR-86	1105	29-APR-86	1100	4.0	258	16973	2177	267	179.0	15
					4.0	234	16255	2136	238	174.0	14
					4.0	365	23425	3118	379	221.0	17
					4.0	347	22644	3063	353	209.0	16
					4.0	866	44411	6016	885	388.0	29
					4.0	880	51616	6263	876	378.0	29
ARESECH	29-APR-86	1130	5-MAY-86	1215	4.0	175	12965	1391	199	113.0	9
					4.0	148	10805	12B7	1B6	84.7	6
					4.0	219	17193	2097	260	134.0	11
					4.0	181	15017	1842	227	155.0	18
		•			4.0	446	22846	2791	472	174.0	13
					4.0	476	23908	2970	466	186.0	13

LONG-TERM BIOMONITORING PROGRAM: VERTICAL FLUX PROGRAM (VFX) VFXDEPD (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

STATION	DATE Deploy	TIME Deploy	DATE RETRIEVE	TIME RETRIEVE	TOTAL TIME (days)	TOTAL DEPTH (a)	CUP DEPTH (=)	SESTON (g/m2/d)	PC (mg/m2/d)	PN (mg/m2/d)	PP (eg/a2/d)	CHLDRO (mg/m2/d)
DARESBCH	5-MAY-86	1230	14-MAY-86	1428	B.6	10.6	3.6	4.3	584	68	8	4.8
					8.6		3.6	4.2	569	68	. В	4.1
					B.6		6.6	7.0	924	106	- 12	9.7
					8.6		6.6	7.3	975	112	12	11.1
					8.6		9.0	26.6	2410	279	34	21.6
					8.6		9.0	21.8	2206	253	33	21.8
DARESBCH	14-HAY-86	1430	19-MAY-86	1100	4.9	10.4	3.4	1.1	453	54	3	3.2
					4.9		3.4	1.6	543	61	5	4.4
					4.9		6.4	3.7	1143	132	8	10.8
					4.9		6.4	4.0	669	83	6	3.8
					4.9		8.8	11.4	1751	224	19	17.4
					4.9		8.8	9.8	1348	183	19	11.0
DARESBCH	19-MAY-B6	1115	28-MAY-86	1635	8.7	10.4	3.4	5.4	724	107	9	4.2
					8.7		6.4	17.3	1323	178	22	7.1
					B.7		8.9	109.9	5898	766	66	23.9
DARESBCH	28-MAY-86	1650	3-JUNE-B6	1015	4.8	10.4	3.4	42.0	2274	289	55	- 8.9
					4.8		3.4	37.6	2146	295	49	8.8
					4.8		6.4	52.1	2702	356	71	9.9
					4.8		6.4	59.0	3431	438	82	14.1
					4.B		8.9	118.4	6448	826	164	21.7
					4.8		8.9	121.0	5810	747	166	22.5
DARESBCH	3-JUNE-86	1020	12-JUNE-8	6 1015	9.0	9.8	2.8	4.4	512	. 79	8	3.4
					9.0		2.B	4.0	505	81	8	0.0
					9.0		5.8	7.8	678	97	11	4.0
					9.0		5.8	9.3	B23	122	15	3.9
					9.0		8.2	44.9	2436	318	53	11.3
					9.0		8.2	43.8	2262	294	51	9.6
DARESBCH	12-JUNE-B	6 1035	16-JUNE-8	6 950	4.0	9.8	2.8	3.1	749	136	12	5.3
					4.0		2.8	3.6	738	8 131	11	5.7
					4.0		5.8	3 5.4	838	3 149	14	9.0
					4.0	i.	5.8	3 3.5	583	5 101	8	3 <b>4.</b> 8
					4.0	ļ	8.2	2 2.5	i 45(	) 85	i t	3.0
					4.0	1	8.2	2 2.9	<b>48</b> 1	84	, <del>,</del>	3.7
DARESBCH	I 16-JUNE-E	1000	24-JUNE-8	6 1430	8.2	10.2	3.2	2 12.2	2 159	7 248	3 16	5 7.9
					8.2		3.2	2 10.9	1083	3 172	23	5 6.7
					8.2	•	6.2	2 21.4	164	4 232	2 26	5 9.4
					8.2	•	6.2	2 24.(	) 155	5 223	5 20	5 B.E
					8.2	2	8.1	7 108.5	5 598	8 785	5 120	21.5
					B. 2	)	8.1	7 145.3	5 658	9 841	13	7 22.4
## LONG-TERM BIOMONITORING PROGRAM: VERTICAL FLUX PROGRAM (VFX)

VFXDEPO (Deposition rate of particulates to the top of the sediment trap cup at deployment depth)

									· · ·			
STAT	ION	DATE Deploy	TIME DEPLOY	DATE RETRIEVE	TIME	TRAP Vol	SESTON CONC	PC CONC	PN CONC	PP CONC	TOTAL CHLORO	ACTIVE CHLORD
						(1)	(mg/1/	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)
DARES	BCH	5-MAY-B6	1230	14-MAY-86	1428	4.0	42	5710	663	74	47.2	39.2
						4.0	41	5570	666	74	40.5	32.6
						4.0	68	9041	1040	116	95.0	B4.0
						4.0	71	9538	1100	120	107.0	101.0
n An an ¹ 8 An Anna						4,0	260	23573	2727	329	211.0	185.0
Γ						4.0	213	21582	2479	319	213.0	202.0
BADER	DCH	LE NAV DI	1170	-		• •	,					
UNRED	DLN	14-141-90	1430	17-841-00	1100	4.0	· 6	2040	302	17	18.2	17.9
<b>-</b>		•				4.0	7	3031	545	26	24.5	23.1
						- 4,0	21	5424	/44	46	60.B	59.5
						4.0	22	3/62	464	- SS - SS	32.1	24.1
		an a				4.0	04	7842	1261	109	9/./	90.0
						9.V	33	/3/4	1029	107	61./	52.9
DARES	BCH	19-MAY-86	1115	28-MAY-86	1635	4.0	54	7176	1066	89	41.2	38.4
f egen			and a second			4.0	172	13124	1770	219	70.2	50.3
						4.0	1090	58498	7596	659	237.0	112.0
		00 HAV 0/		-								
UARES	BCH	28-MA1-80	1650	S-JUNE-86	1015	4.0	230	12441	1580	200	48.5	26.5
· .						4.0	206	11743	1612	269	48.2	43.7
						4.0	285	14787	1948	288	54.3	21.2
F						4.0	323	18773	2397	446	76.9	37.0
· · · ·						4.0	648	35283	4518	899	119.0	45.0
						4.0	66Z	31791	4070	910	123.0	55.6
DARES	BCH	3-JUNE-BA	1020	12-JUNE-8:	5 1015	4.0	45	5254	814	79	34.8	10.3
						4.0	41	5194	836	86	-	· •
2						4.0	80	6976	999	114	41.6	22.4
•						4.0	96	8462	1254	155	40.6	22.4
						4.0	462	25046	3270	547	116.0	48.3
						4.0	450	23260	3026	523	98.6	43.2
DARE	RCH	12-31NE-84	1075	12-1100-0	4 050		1.4	7471	121	55	74.4	
e ornitee		TZ VOML DI	11000	TO ODAC-D	0 730	4.0	14	2701	0Z1 400	53	24.4	1/.2
						1.0	10	1000	101	31 1 x	20.0	1/+2
						4.0	16	2674	1001 147	0 <del>1</del> 70	11.0	12.2
						A 1	11	20/1	701	37 90	17 8	12.2
						4.0	14	2206	387	32	16.9	12.2
		·										
DARES	5BCH	16-JUNE-86	5 1000	24-JUNE-8	6 1430	4.0	114	14950	2315	148	73.9	50.3
				•		4.0	102	10126	160B	216	62.3	34.4
•						4.0	200	15370	2171	244	87.5	48.3
						4.0	224	14535	2082	245	82.2	43.2
						4,0	1014	55976	7337	1120	201.0	79.4
-						4.0	1358	61581	7859	1280	209.0	79.4